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Executive Summary 

Value proposition for low carbon living 
The value proposition for low carbon living is defined as the articulation of the 
measurable value an organisation or individual will receive from the 
experience; where the end value equates to the perceived benefits minus 
perceived costs.  This means that the value of low carbon living is unique to 
the perspective of the investor, and the set of benefits and costs included in 
the economic equation are related only to those likely to be perceived by the 
investor.  For example: if the investor is a homebuyer the factors contributing 
to the value of low carbon living will be different to the range of public benefits 
and costs experienced by the wider community where the investor is 
government. 

The literature review 
The literature documents a wide range of private and public benefits and costs 
associated with low carbon living.  The literature relating to low carbon living is 
particularly rich, describing the benefits and costs associated with different 
building typologies, different climates and different development scales.  
Empirical evidence is available from individual buildings, multiple unit 
buildings, and collections of buildings. 

The literature provides evidence of benefits and costs associated with energy 
and water saving technology and behaviour strategies, low carbon 
construction strategies, and the application of renewable energy technologies 
in low carbon buildings.  Evidence is also available regarding the value of 
innovation that is stimulated by regulatory and non-regulatory actions to 
deliver low carbon buildings. 

The actions taken to create low carbon buildings provide additional positive 
and negative externalities that should be included in specific value 
propositions.  For example: health, productivity and other benefits due to 
thermally comfortable buildings are well documented in the literature and may 
provide individual households and the community with significant benefits, but 
many of these are yet to be monetised for use in value propositions. 

Green building facades and roofs can provide a range of benefits such as 
stormwater management, air pollution reduction, heat island effect reduction, 
energy savings, improved acoustic, privacy, better aesthetics and increased 
biodiversity, but with the exception of predicted energy savings, many of these 
benefits have not been monetised in a manner that is easily transferable to 
the value proposition exercise. 

The literature also provides evidence that estate design strategies can deliver 
low carbon outcomes with externalities such as safety and security, increased 
social interactions, and low carbon impact behaviours such as community 
gardens and support networks.  Less available in the literature is the evidence 
base for valuing that creation of social capital for encouraging and maintaining 
low carbon behaviours.  Although the literature provides reasonable evidence 
of successful strategies for creating a sense of community that is valued by 
residents, and documents some of the benefits to participants, those benefits 
are yet to be fully monetised and included in value proposition statements. 

The Adelaide Living Laboratory provides a unique opportunity to expand the 
global knowledge base on the value of low carbon living, and address some of 
the highlighted gaps in the literature. 
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Adelaide as a research hub for low carbon living 
The value proposition exercise is a part of the Adelaide Living Laboratory 
project funded by the CRC for Low Carbon Living (CRC-LCL), with the South 
Australia Government (Renewal SA) as the key project partner. 

CRC for Low Carbon Living 
The CRC for Low Carbon Living is a national research and innovation hub 
which seeks to enable a globally competitive Australian low carbon built 
environment sector.  With a focus on collaborative innovation, the CRC-LCL 
brings together experts from industry, government and leading researchers to 
develop pathways to low carbon living. 

CRC-LCL is designed to develop new social, technological and policy tools for 
facilitating the development of low carbon products and services to reduce 
greenhouse gas emissions in the built environment. 

A key objective of the CRC-LCL is to help cut Australia’s residential and 
commercial building carbon emissions by 10 mega tonnes by 2020, which is 
the environmental equivalent of taking 2.3 million cars off the road each year. 

Adelaide Living Laboratories 
The four year Adelaide Living Laboratory venture is an action based research 
project drawing evidence from three key Adelaide development sites at 
Tonsley, Lochiel Park and Bowden.  Each of these sites has been established 
to meet specific government policy objects, is physically created by the local 
building and construction industry and includes detailed monitoring by the 
University of South Australia. 

The Adelaide Living Laboratory project utilises the expertise and skills of 
community, industry and university participants to undertake site-specific 
research to build a stronger evidence base supporting government policy and 
planning, and industry delivery.  The unique program of research is designed 
to help build a better understanding of low carbon living. 

Stage 1 of the Adelaide Living Laboratory project explores four research 
themes: (a) co-creation; (b) integrated energy, water, waste and transport 
precinct modelling; (c) energy demand management solutions; and, (d) the 
value proposition for investment in low carbon development. 

Value proposition research 
Low carbon living provides a value proposition to various stakeholder 
investors according to the scale and scope of the value equation.  From a 
development scale perspective investigations will be undertaken at single 
building/household level up to suburb scale development, with each level 
introducing new economic costs and benefits, and at each level the value 
proposition appeals to different stakeholders. 

The program is designed to develop a total of 8 value propositions and should 
capture a diverse range of impacts from building energy savings to human 
health benefits to transport to food system to biodiversity to social 
sustainability impacts, with each change of scope and level of complexity 
realising benefits to different stakeholders. 

This first report provides the initial literature review for the value proposition 
exercise.  Further reports describing each value proposition will be developed 
throughout the four year research exercise, and add to this literature review. 
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Introduction 
The value of low carbon living is the net of all benefits and costs perceived by 
the investor.  This means that the particular benefits and costs used to 
determine a value proposition are only those relevant to the particular 
investor.  Different investors: say home buyers, home builders, estate 
developers and government regulators; each perceive the value of that 
investment according to slightly different sets of benefits and costs.  For 
example, home buyers may value low operational energy costs and increased 
thermal comfort from low carbon homes, whereby the wider society, 
represented by the government, may value decreased infrastructure costs 
associated with lower energy use and reduced peak energy demand. 

Low carbon living provides a value proposition to various stakeholders 
according to the scale and scope of the value equation.  From a development 
scale perspective the investigation can be undertaken at single 
building/household level up to suburb scale development and beyond, with 
each level introducing new economic costs and benefits, and at each level the 
value proposition appeals to different stakeholders.  The scope can also be 
varied to capture larger and more diverse impacts starting from building 
energy impacts to human health to transport to food system to biodiversity to 
social sustainability impacts, with each change of scope and level of 
complexity realising benefits to new stakeholders. 

The literature demonstrates an extensive and rapidly growing evidence base 
for many benefits and costs associated with low carbon buildings, low carbon 
estates and low carbon living.  This report summarises the range of economic 
benefits and costs published in the literature, and provides a platform from 
which to determine the value proposition of low carbon living at various 
development scales, and from the perspective of different investors. 

The literature provides a range of economic analysis methodologies used to 
determine the benefits and costs associated with low carbon living.  Of 
particular interest is the value proposition methodology [1] which provides a 
marketing based approach to understand the creation of products and 
services valued highly by the defined market, where the value is determined 
by the customer’s experience of the offering in terms of their wants and 
needs.  This reinforces the investor-centric nature of economic value, whereby 
only those benefits and costs perceived by the investor are relevant for the 
value proposition to that investor. 

In simple terms the value proposition is the articulation of the measurable 
value an organisation or individual will get from the offering; where the end 
value equates to the perceived benefits minus perceived costs [1].  Benefits 
are the outcomes and experiences of value to the customer, and costs are the 
financial exposure and other factors (i.e. time, risk) that the customer must 
pay to receive the product. 

The value proposition methodology proposed by Barnes et al [1] has been 
applied across many field such as health products and services, tourism, 
manufacturing, and consumer food products.  Other authors have applied the 
value proposition methodology to the concept of sustainable development [2].  
For example: Muller [2] combined the principles developed by ‘The Natural 
Step’, ‘Cradle to Cradle’ and ‘Human Scale Development’ with the three-pillar 
concept, articulating various requirements for a sustainable value proposition.  

For this literature review, the concept of value proposition helps to outline a 
wider range of possible benefits and costs, to include those experiences of the 
investor yet to be effectively monetised and incorporated into typical net 
present value calculations. 
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The economics of low carbon homes 
The economic costs and benefits associated with low carbon homes has 
recently become the subject of much research [3-16].  Many of these studies 
consider the direct costs and benefits of low energy homes from the 
perspective of the household (private impacts), often constrained to energy 
related impacts, but this approach limits the range of factors that can be 
included in the economic equation as many of the costs and benefits may be 
realised by other stakeholders or the greater community (social impacts).  For 
example: the economic analysis used for proposed regulatory change typically 
incorporates a wider range of private and social impacts articulated from the 
perspective of the wider community [17]. 

Proposed changes to the National Construction Code, and other similar 
building codes, are considered on the basis of economic analysis, in 
particular, a net present value (NPV) calculation of the economic costs and 
benefits for both private and social impacts.  The process is designed to 
determine the option which delivers the largest net benefit to society [17, 18]. 

UK building regulation economic assessments [19-21] have followed a similar 
approach, whereby construction costs have been estimated according to 
expected additional materials and technologies installed rather than 
improvements in climate appropriate design or industry practices.  But 
probably the most significant difference between Australian and UK regulation 
impact assessments to date is the incorporation of technology specific 
learning rates for the various building systems and energy technologies 
expected to be applied [21].  Other market transformational effects of 
regulation such as stimulating increased industry innovation have been 
recognised in the UK analysis, as have complementary policy impacts such as 
increased energy security and trade balance benefits, but are typically not 
quantified and included in the economic tests. 

To encourage a consistent approach to the economic analysis for proposed 
energy and greenhouse gas emission related changes to the Building Code of 
Australia, the Australian Building Codes Board commissioned a guidance 
report [17].  This report describes the range of social and private economic 
impacts that should be incorporated into the net present value calculation, 
including: energy network impacts (production, transmission, distribution); air 
quality impacts; and carbon emission impacts.  The report is limited in its 
search for additional evidence to support an extension to the range of 
impacts, choosing instead to note that many of the costs and benefits will be 
difficult to estimate. 

The literature discusses a large number of factors that are likely to impact the 
economic costs and benefits of low carbon buildings which can be categorised 
into two basic groups: those impacts related to changes in energy use; and 
those non-energy related impacts, some of which may be associated with the 
unintended consequences of addressing energy use and carbon emissions in 
buildings.  An understanding of this literature is important to provide the 
foundations for a more comprehensive range of costs and benefits that may 
be valued by various investor scenarios.  The following sections review the 
relevant literature for each of the key impacts. 
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Energy related impacts 
The key energy related costs and benefits used in the net present value 
calculations for building energy regulation can be classified as: (1) direct 
energy savings due to the application of technologies and materials to meet 
the higher performance standard; (2) compliance costs, particularly 
government administrative, industry development and construction costs 
associated with the application of those technologies and materials; (3) 
changes in asset value due to improved energy performance; and (4) changes 
in energy network infrastructure due to improved energy performance. 

Direct energy savings 
The empirical evidence of energy savings from the monitoring of higher 
performance homes, including zero energy and zero carbon homes, 
demonstrates appreciably lower operational energy costs when compared to 
standard construction for that region [22-25].  For example: Parker [23] 
analysed energy and cost data from twelve ultra-low or net zero energy 
homes in the United States and found typical operational energy savings of 
over 50 per cent for less than USD$0.10 per kWh.  Gill et al. [22] reviewed the 
monitored performance of 25 low energy homes in the UK and found energy 
savings of 56 per cent and water savings of 39 per cent, when compared to 
standard construction.  Saman et al. [24] and Berry et al. [25] found large 
energy savings for a large sample of near zero energy homes in South 
Australia. 

These direct energy savings may be related to improvements in appliance and 
equipment efficiency, the integration of passive solar design strategies or 
active renewable energy systems, or even changes in the behaviour of 
building users due to energy end-use feedback. 

As thermal performance is improved in homes, some of the expected energy 
savings are typically taken in additional thermal comfort or other energy 
services [26-28].  This behaviour, called the direct rebound effect, results in a 
lower economic benefit than would be expected from energy engineering 
calculations based on the improvement of the building or its energy systems.  
This rebound effect is covered in greater detail later. 

Other studies of low energy homes estimate savings based on energy 
simulation software outputs without validation of energy end-use behaviour 
against monitored buildings [3, 5-12, 14, 29].  Whilst these models provide an 
interesting insight into the potential for energy savings, without appropriate 
calibration to account for patterns of actual household energy use it is difficult 
to understand the likelihood of the models to under or over-estimate average 
savings. 

From a building regulatory perspective, the need for accurate predictions of 
energy savings is imperative to the economic model.  The calibration of the 
energy performance model by utilising monitored energy use data from a 
sample of houses incorporating technologies similar to those expected of low 
energy homes can improve the accuracy of energy saving predictions [30]. 
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Construction and maintenance costs 
The literature includes many studies exploring the costs of constructing low 
energy homes, and their associated ongoing maintenance costs [3-13].  
Typically these studies start with a single or set of house designs and add 
building materials and/or energy technologies to improve net energy 
performance.  This process adds construction costs to a base design to lower 
total energy use, rather than optimising net energy performance with a 
combination of changes to floor plans, material specifications and technology 
application. 

Other research has considered the substitution of products, or the reduction of 
product size, therefore expanding the range of options to include lower 
construction cost choices [14, 29, 31, 32].  For example: Gamble, Meisegeier 
and Hall [14] included several window size reduction variations, allowing a 
negative cost option to be evaluated.  Similarly, McLeod and Fay [29] also 
included the negative construction cost option of reducing window size when 
calculating the economics of providing human thermal comfort in Tasmania, 
noting the limitation of not altering the floor plan or orientation to achieve 
further negative cost energy performance improvements.  Sustainability 
House [31, 32] examined a range of positive and negative cost strategies on a 
set of twenty house designs at NatHERS 5 and 6 Star performance and found 
that higher levels of thermal comfort could be delivered for an average 
decrease in construction costs, primarily through changes to glazing and 
insulation specification, although performance improvements above 7 
NatHERS Stars required a change to more expensive insulated glazing units. 

The typical approach begins with a home design and associated 
specifications and makes sequential changes until the new standard is 
reached.  Typically these studies do not optimise the house design to utilise 
passive solar design strategies, or apply different construction systems in 
specific rooms or orientations, or eliminate or reduce the need for various 
energy service technologies.  Yet the authors provide no evidence that house 
designers create new product to meet revised energy standards based on 
previous market fashions; systematically adding components and systems 
and therefore costs until they comply with the new standards.  If designs are 
instead created from scratch specifically to meet new regulatory requirements, 
then total construction costs may be even lower than predicted by studies 
which start by adding to existing non-compliant house designs.  This 
argument is supported by recent evidence which found that house designs 
created specifically to meet NatHERS 5 Star standards in Australia had lower 
total construction costs than those designed for previous lesser building 
energy standards [33].  This highlights the value of industry learning 
processes which will be covered in more detail later. 

Step changes in thermal comfort demand can result in step changes to 
infrastructure sizing, system type or system need [34-36].  Energy Efficient 
Strategies [34] demonstrated that as thermal comfort energy loads reduce, 
conditioning system sizing can be reduced with consequent cost reductions.  
Elberling and Bourne [35] showed that when loads are greatly reduced, the 
system type needed to meet the lower demand can be changed with 
consequent cost reductions.  Ultimately, as Vale and Vale [36] demonstrated, 
if the demand for additional energy for heating or cooling can be reduced to 
near zero, the entire system supplying that service can be eliminated.
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Similar cost improvements can be found from reducing the demand for hot 
water.  Elberling and Bourne [35] showed that when hot water demand was 
reduced for both space conditioning and domestic hot water needs, a 
combined system could replace separate heating systems, thus delivering a 
cost reduction. 

The combination of daylight, lighting control systems and high efficiency 
lighting systems can also deliver net cost savings [37].  Vaidya et al. [37] 
argue that the integration of systems can produce a domino effect, whereby 
the bundling of changes leads to a net saving, for example: improved 
daylighting combined with lighting control systems can reduce the need for 
artificial lighting during the heat of the day, which can lead to lower cooling 
loads and possibly the reduction in cooling plant capacity. 

The elimination of systems, the reduction of loads on energy systems, or the 
substitution of system type may also result in lower maintenance costs.  For 
example: high efficiency lighting technologies such as CFL and LED lamps 
each have a considerably longer effective life than traditional incandescent 
lamps or dichroic (halogen) downlights [38], leading to likely ongoing 
maintenance savings. 

Changes to the technology used in homes may increase maintenance costs.  
For example: the addition of grid connected solar photovoltaic systems with 
an expected effective life of thirty years, and the associated DC/AC inverters 
which currently have an effective life of approximately ten years, have shorter 
effective lifespans than the expected economic life of the building, leading to 
increased maintenance from regular system replacement [39]. 

Building design, particularly in facets that are irreversible in the short term 
such as orientation, size, shape, and integrated energy systems, has longer-
term financial implications [40].  Verbruggen et al. [40] argues that the 
irrevocability of particular energy performance endowments means that initial 
investments in building design should be valued more highly to reflect the 
relatively higher cost of addressing energy performance once those 
endowments are ‘constructed in’ to the development. 

Compliance costs and market transformation 
The regulatory environment, and in particular the use of performance-based 
codes and standards, is a key driver of innovation [41-43], leading to change 
in industry skills and knowledge, product and supply chain development, and 
increased production volumes.  This market transformation has a material 
influence on the end cost of housing.  From one perspective regulation may 
drive some costs higher in the immediate term due to additional requirements, 
but simultaneously regulation creates the transformation that drives the cost of 
housing lower over the medium and longer term. 

The market transformational processes of industrial learning, progress 
functions, tool development, supply chain development and increased 
production volumes have been demonstrated to rapidly reduce the cost of 
achieving a particular performance outcome for products as diverse as 
airplanes, chemical processes, and semi-conductors [44-49]. 

Construction and product cost reductions can come from a complex web of 
interactions relating to commercial risk, research and development, design 
innovation, supply chain changes, manufacturing processes, installation and 
maintenance processes, and changes in marketing needs as products and 
associated markets mature [50].
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Research into building product performance and cost has demonstrated that 
over time, through processes of market transformation, energy efficiency 
characteristics have increased whilst real costs have decreased [51, 52].  
Similarly, research into typical household appliances such as refrigerators, 
clothes washing machines and dishwashers has found that energy efficiency 
performance has also increased whilst real purchase costs have decreased 
[53, 54]. 

Learning and logistics curves, sometimes referred as experience curves, for 
energy technology production and application costs have been calculated by 
various researchers [51, 55-63].  Typically annual savings for building fabric 
technologies fall in the range of 9 to 27 per cent, with 18 per cent being 
average, while energy generating technologies such as photovoltaics have 
averaged around 20 per cent saving rate per annum over a 20 year period. 

Researchers have noted the critical link between building standards and 
industry development [55, 64].  Jakob and Madlener [55] describe a virtuous 
cycle whereby new building energy standards lead to innovation in solutions; 
then diffusion of solutions; and finally cost reductions; which encourage policy 
makers to set higher energy standards.  Smith [64] noted that building 
regulations were a key environmental driver for volume builders but expressed 
caution on the relationship between building regulation and industry 
development, stating that an undemanding regulation-driven transformation 
may not encourage deeper learning. 

The Australian experience, although less researched than European and 
American experiences, has found large cost savings and increased skill 
development through policy driven building energy efficiency regulation 
related learning [65, 66].  For example: Energy Efficient Strategies [65] noted 
builders were able to halve the original construction cost premium of moving 
to the proposed 5 Star standard by learning about sustainable design 
concepts, ahead of expected additional savings due to greater economies of 
scale and supply chain improvements. 

The transformation process extends to government or industry costs related to 
the administration and compliance enforcement of a new standard, where new 
tools or administrative procedures may increase the cost of each building 
initially until processes and tools evolve to meet the new needs.  In many 
cases, building energy standards already exist and unless significant changes 
are made to administrative procedures or the minimum requirement for 
participant knowledge and training, additional compliance costs are often 
minor. 

Asset value impacts 
There is a large body of evidence collected over many years that 
demonstrates housing markets value energy efficiency, thermal comfort and 
lower utility bills [67-75].  For example, hedonic modeling was used to analyse 
the relationship between energy efficiency rating and sales price for a sample 
of 5,000 houses sold in Canberra in 2005 and 2006, and found a statistically 
significant relationship between the rating and the sale price [76].  Brounen 
and Kok [70] also used hedonic modeling to analyse the sale of 177,000 
homes in the Netherlands and found that increased energy efficiency resulted 
in higher sales prices.  Fuerst et al. [75] analysed over 325,000 house sales in 
the UK and found a positive relationship between the published energy rating 
and the sales price.
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Researchers suggest that the economic modeling of residential buildings for 
regulatory change should incorporate the increase in residual house value 
due to energy efficiency features [5, 77].  Problematic with the inclusion of 
asset value impacts in net present value calculations is that they occur only 
when the asset is presented to the market.  In the case of housing, there is no 
standard period before a house is offered for sale; therefore it is difficult to 
allocate the likely impact to a specific point in time.  Asset value impacts due 
to energy performance improvements will continue to be available throughout 
the economic life of the building. 

Peak load reduction impacts 
Electricity networks are a complex interaction between generation, 
transmission and distribution systems and the demand for energy.  The load 
varies daily and seasonally, peaking during periods of extreme climatic 
conditions, whilst simultaneously growing as new energy services are added 
to the system and falling as energy services become more efficient.  In 
Australia, both average demand and peak demand were expected to grow 
rapidly at about 20 per cent and 30 per cent respectively for the period 2010 
to 2020 [78], although the recent uptake of rooftop photovoltaics may 
moderate the estimated rate of growth [79, 80]. 

The difference between managing a peak daily demand on a mild day and 
that during extreme climatic conditions, such as a summer heatwave, 
represents a substantial investment in energy supply infrastructure which is 
used infrequently.  In South Australia, data from the electrical network utility 
shows that one third of the required capacity is needed for just 3 per cent of 
the year [81, 82]. 

The market value of electricity increases appreciably when demand 
approaches the maximum capacity of supply, with analysis showing that peak 
demand periods that account for only 3.2 per cent of the annual market were 
responsible for 36 per cent of total market costs [83].   

Household energy use reductions, across both the average load and during 
times of peak demand, plus domestic-scale on-site generation of electricity, 
can combine to reduce the need for new large-scale generation infrastructure 
and enhancements to electricity supply networks [78, 84-88]. 

Considerable savings can be achieved in avoided capital and maintenance 
expenditure on the electrical network by reducing electricity demand during 
periods of extreme climatic conditions such as summer heatwaves [78, 89].  
The Department of Climate Change and Energy Efficiency [89] found that 
network costs to address peak demand are a key driver of rising energy prices 
and the application of energy efficiency actions will reduce expected price 
increases.  Langham et al. [78] found that avoided capital and maintenance 
expenditure for electricity generation, transmission and distribution could be 
valued at between AUD$2.4 and $3.3 billion per annum through a 
comprehensive program of improving building energy efficiency, and went on 
to calculate the annual rate of infrastructure savings per unit floor area of 
residential building per percentage of building energy efficiency improvement 
at AUD$0.024.  These savings have yet to be incorporated into the economic 
models used in building energy regulatory change. 
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Non-energy economic impacts 
Whilst energy savings and associated consequential carbon emission and 
economic impacts are at the core of the policy intent, the higher building 
energy performance of low carbon buildings is typically accompanied by 
externalities [90], which if able to be monetised can add to the depth and 
sophistication of the economic model.  The literature describes a number of 
non-energy related private and societal costs and benefits such as: (1) mental 
and physical well-being generated from living in a thermally comfortable and 
low energy use building; and (2) productivity impacts associated with living in 
a thermally comfortable buildings.   

The value of low carbon living and low carbon buildings can extend beyond 
the building boundaries.  The creation of green infrastructure such as green 
roofs or green facades, or the development of a community, may provide a 
range of environmental and quality of living benefits.  And direct private 
impacts may extend beyond the financial benefit of ongoing energy savings.  
Individuals may derive psychological or physical health benefits from low 
carbon living, such as intrinsic (warm-glow) satisfaction from taking action to 
address global climate change [91]. 

Thermal comfort related impacts 
Thermal comfort is a primary want and need for humans.  Human thermal 
comfort is defined as the “condition of mind that expresses satisfaction with 
the thermal environment and is assessed by subjective evaluation” [92]. 
Human perception of thermal comfort takes into account air temperature, air 
speed, mean radiant temperature, relative humidity, occupant activity and 
clothing [93]. Humans play an active role in maintaining their own comfort, 
through changing their clothing, changing their level of activity, changing the 
natural conditions in that space (i.e. opening windows or doors), or by using 
technology to return the indoor conditions to that which matches their 
perceived needs [94].  Thermal comfort is also a social construct reflecting the 
beliefs, values, expectations and aspirations of households, with demand for 
comfort increasing dramatically over the past few decades [95]. 

The value of thermal comfort reaches beyond the simple calculation of energy 
costs to maintain the desired level of comfort.  Building related thermal 
comfort has a strong relationship with human health.  Australian researchers 
[96-101] argue that for groups both young and old without ready access to 
thermally comfortable buildings, extreme weather events such as heatwaves 
appreciably increased human mortality and morbidity.  Strand et al. [101] 
found that exposure to higher ambient temperatures in the last four weeks of 
the pregnancy increased the risk of stillbirth.  Saniotis & Bi [96] found that heat 
exposure increased health risks associated with the relationship between 
pharmacokinetics and physiological changes, and increased health risks 
associated with the relationship between food-borne disease and 
temperature.  They also noted that some drugs were compromised by 
exposure to higher temperatures.  Bi et al. [97] investigated more than a 
dozen published Australian studies and found substantial evidence for heat 
stress related mortality. 

Internationally the link between human health and building thermal comfort 
has been established [102-112].  Many of the studies, particularly those from 
Europe and North America, contrast with Australian research by investigating 
the impacts of cold and damp homes rather than higher temperatures.   For 
example: Gilbertson et al. [105] interviewed households that received thermal 
comfort upgrades and reported resident perceptions of improved physical 
health and comfort, even the easing of chronic illness symptoms.  What was 
surprising was the perception of improved mental health and emotional well-
being. 
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The literature also highlights wider social impacts of thermal stress.  
Australian researchers investigated the link between heat stress and 
behavioral disorders, observing that above a threshold of 26.7°C there was a 
positive relationship between ambient temperature and the number of hospital 
admissions for mental and behavioral disorders [98].  Others noted that some 
of the secondary characteristics of heat events that are often overlooked are 
increased rates of injury, trauma, crime, and domestic violence [97]. 

The literature also describes productivity improvements relating to thermally 
comfortable conditions such as those expected in zero energy homes [112, 
113].  For example: Chapman et al. [112] investigated the impacts of 
retrofitting insulation and other measures in 1350 New Zealand homes and 
found lower numbers of ‘days off work’ and ‘days off school’ for the occupants 
of thermally more comfortable homes. 

The monetisation of non-energy related impacts is appearing in the building 
energy performance literature, and although the various authors suggest the 
value of non-energy related economic benefits may be relatively high when 
compared to the energy related impacts of low-energy homes, the calculation 
methodologies have been bespoke to each study and the outcomes show a 
wide range of results [107, 109, 112, 113].  For example: Stoecklein et al. 
[110] suggested non-energy benefits could be 2.5 times greater than direct 
energy savings; Schweitzer & Tonn [109] calculated the non-energy benefits 
to be slightly greater than the average energy savings; Chapman et al. [112] 
found that the health related economic benefits of insulation retrofits 
appreciably outweighed the energy related economic benefits for a large 
sample of households in New Zealand; while Ürge-Vorsatz et al. [107] 
cautioned the potential for double counting the value of benefits and 
suggested that individual benefits could be as high as 43 per cent of direct 
energy savings; and Williamson et al. [113] similarly found that health related 
benefits of incremental building energy code change where probably lower 
than the expected direct energy benefits. 

Green building facades 
The creation of green infrastructure such as green roofs and walls can provide 
a range of benefits including, but not limited to, stormwater management, air 
pollution reduction, reduction of heat island effect, reduction of building energy 
usage for thermal comfort, and increased biodiversity [114].  Green walls also 
provide acoustic benefits, privacy and possibly aesthetic benefits [115]. 

Green facades and roofs come with costs associated with higher construction 
and maintenance costs, and the additional materials for moisture barriers and 
to trellis green walls have embodied greenhouse gas emission impacts. 

The quantification of economic benefits and costs for green roofs is limited in 
the literature to mostly operational energy related impacts [116, 117], although 
a more comprehensive assessment of green facades included various social 
costs and benefits such as air quality improvement, carbon reduction, habitat 
creation, aesthetic impact, and urban heat island mitigation [118]. 

Given the progress of building energy regulations, the literature suggests that 
operational energy savings from green roofs is likely to be insignificant for new 
buildings but may provide some benefit to older pre-regulation buildings [116, 
117]. 
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Sense of community 
Humans, in general, are social animals with both a want and a need to 
interact.  Jackson [119] p193 puts it best in ‘As a gregarious species, people 
benefit emotionally and physically from interpersonal relationships.’  The 
creation of social capital, enhanced by designing estates to encourage 
informal social interaction, can be linked to physical and mental health 
benefits [119-121].  The creation of social capital has perceived benefits to 
both participants seeking a sense of community, value to developers in 
creating more commercially attractive urban developments, and value to 
government through the creation of healthier and more vibrant communities. 

A few case studies are provided in the literature.  Of particular relevance is the 
creation of social capital in the Lochiel Park Green Village.  At Lochiel Park 
the streetscape, building type, linkages to the River Torrens Linear Park, the 
community garden, the establishment of community groups, and the relatively 
large allocation of greenspace are all designed to encourage high frequency 
informal interaction between residents, and between residents and the wider 
community.  Fostering a sense of community was highlighted as a goal within 
the initial policy documents [122, 123].  In particular, the design of the estate 
included pedestrian and cycling linkages with surrounding land uses, including 
the River Torrens Linear Park and the adjacent suburbs and was influenced 
by a market research exercise which surveyed local foot and cycle traffic 
[124].  Other initiatives included the creation of a Lochiel Park community 
website, funded from government sources which was used to facilitate the 
formation of a residents association; and the involvement of initial residents in 
the development of a community vegetable garden. 

Research undertaken at the early stages of Lochiel Park’s development found 
that people considered that the regular community meetings held by the Land 
Management Corporation were important parts of community life, but the 
authors wondered whether this sense of community could be dissipated once 
people settle in and develop household routines [125]. 

By 2012 the residents had a variety of specific formal and informal groups and 
activities to which to be involved, including but not limited to: 

• Friends of Lochiel Park Association 

• Lochiel Park Community garden 

• Ripples Community Arts Group 

• Lochiel Park Book Club 

• Seed collecting and indigenous plant propagating group 

Research has found that these groups are popular with residents, with 18 of 
the 25 households interviewed recently engaged in one or more of the 
community groups or organised activities [16]. And of those who were not 
participants in regular activities, almost all attended the annual estate 
Christmas Party.  The interview data demonstrates that Lochiel Park has 
successfully developed and maintained an active and vibrant community.  
Further analysis is needed to quantify the value of social capital creation to 
various investor categories including: homebuyers, estate developers and 
wider society. 
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Direct and indirect rebound effects 
Bridging both direct and indirect impacts is the concept of rebound.  
Economists have debated for over 150 years that direct and indirect rebound 
effects result in actors using higher amounts of energy than would be 
expected from the application of energy efficiency technologies and practices, 
and some have argued that improvements in energy efficiency will lead to a 
net increase in energy use rather than the expected decrease [126-129]. 

In observing the coal consumption of 19th century steam engines, Jevons 
[129] argued that improvements in engine energy efficiency increased the use 
of coal by making the technology more economically attractive, rather than 
delivering energy savings.  This concept was taken up by Khazzoom [128] 
and Brookes [126] who postulated that economy-wide rebound effects, being 
the sum of direct and indirect effects, will absorb expected benefits and may 
lead to a net growth in energy use and greenhouse gas emissions.  The 
Khazzoom-Brookes Postulate suggests that if a process is made more energy 
efficient and economically attractive, there will be greater demand for that 
energy service and a direct rebound effect in energy use, while any savings 
would increase demand for other goods and services and hence an indirect 
rebound in energy services.  The greater the efficiency gain, the greater the 
demand for energy services, and the greater the total energy used. 

Khazzoom [128] in studying the likely effects of appliance and vehicle energy 
efficiency argued that the price elasticity of demand for many energy end-uses 
was greater than one, therefore increased efficiency would increase demand 
at an energy use rate higher than the expected saving, and would increase 
demand for other energy end-uses.  Brookes argued that the substitution of 
energy for labour and capital would lead to increases in total factor 
productivity and growth in overall output, which would result in increases in 
economy-wide energy use. 

Critics of the Khazzoom-Brookes Postulate point to several key issues in 
relation to building related rebound effects [127, 130-132]: (a) the elasticity of 
demand is often less than unity and when demand is close to saturation, 
elasticity is close to zero; (b) substitute activities may have a lower energy or 
carbon intensity; and (c) economy-wide rebound effects may be much higher 
for direct (industrial) productivity improvement related activities than for 
domestic energy use scenarios. 

Evidence of direct rebound effects 
There is a substantial body of empirical evidence demonstrating that technical 
improvements in energy efficiency, including improvements to building 
performance, do not deliver expected energy savings according to 
engineering calculations, but deliver smaller than expected savings [26-28, 
133-136].  The evidence in the literature strongly supports the critics’ key point 
that elasticity of demand is often less than unity and direct rebound effects are 
generally less than 100 per cent, and are more typically between 10 and 30 
per cent for domestic energy services.
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The reference frame is critical in examining rebound effects.  At a global 
scale, because of the relatively strong relationship between artificial lighting 
and human productivity, the Jevons paradox has been demonstrated across 
three centuries of lighting technology change [134, 137].  Tsao et al. [134] 
point out that the historic rebound trend may not continue in all situations as 
indoor light levels near saturation (satisfies human need for light) and the 
price elasticity of demand reduces.  Fouquet and Pearson [137] tracked 
income and price elasticity of demand for lighting over the past two centuries 
and found that rebound reduced as incomes grew, with rebound greater than 
100 per cent during the nineteenth century, reducing well below 100 per cent 
during the twentieth century.  Similarly, at the individual household scale, 
research by Bladh and Krantz [136] found that domestic lighting efficiency 
gains were delivered with only small levels of rebound. 

Evidence of indirect and economy-wide rebound 
The evidence for indirect and economy-wide rebound is limited [130, 132, 
133, 138-141].  Greening et al. [133] reviewed over 75 studies into direct, 
indirect and economy-wide rebound and found that the evidence for economy-
wide rebound was inconclusive but likely to be less than 100 per cent.  
Schipper and Grubb [132] examined the relationship between energy 
intensities and gross domestic product (GDP) and concluded that energy 
efficiency does lead to energy savings and hence economy-wide rebound was 
a second order effect in mature industrial economies.  Geller and Attali [130] 
examined a number of studies and found that energy efficiency actions 
decreased the cost of energy, increased employment and increased personal 
income, but the economy-wide rebound effect was less than two per cent of 
the direct energy saving.  Allan et al. [139] used an energy-environment-
economy general equilibrium model to investigate economy-wide impacts of 
energy efficiency activity, finding an overall long term rebound effect in the 
order of 37 per cent.  Sorrell [138] argues that this model may have 
overestimated economy-wide rebound by assuming efficiency gains in the 
electricity sector where they may be close to thermodynamic limits. 

Barker et al. [140] used an energy-environment-economy multi-sectoral 
dynamic econometric model to determine the impact of UK energy efficiency 
policies on the local economy and found that direct rebound averaged around 
15 per cent, with economy-wide rebound of a further 11 per cent.  
Interestingly, the application of energy efficiency also leads to decreases in 
inflation, and growth in GDP.  Sorrell [138] argues that this model 
underestimates rebound by not including factors such as the energy 
embodied in energy efficiency technologies.  Sorrell also found that while 
there was no empirical evidence presented to support the Khazzoom-Brookes 
postulate in developed economies, economy-wide rebound is likely to be 
higher in energy intensive industries or for general purpose technologies such 
as computers and steam engines, where efficiency gains have momentous 
productivity impacts.  In the case of applying energy efficiency in the domestic 
setting, Sorrell found the economy-wide rebound was certain, but likely to be 
at the lower end of the range. 
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Relevance of rebound for this study 
In the case of transitioning to low carbon impact buildings, that is improving 
the energy performance of mature new housing product from reasonable 
performance to low energy performance in mature developed economies, the 
level of direct rebound for domestic energy end-uses and economy-wide 
indirect impacts would be at the lower end of the range.  Whilst little Australian 
evidence exists, the evidence from similar developed nations suggests that 
the price elasticity of demand for energy services such as lighting, thermal 
comfort, water heating, laundry and refrigeration is likely to be very low and 
hence improvements in energy efficiency to appliances, equipment and the 
building fabric are likely to decrease household energy use. 

Because rebound effects are real, the energy models that provide household 
energy saving predictions should be calibrated with actual behaviours 
monitored for similar types of buildings.  Without calibration, household energy 
use models based on technology efficiency alone, are likely to overestimate 
energy savings and over-value the benefits perceived by building users. 
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Summary 
Value is in the eye of the beholder.  The value proposition for low carbon living 
is defined as the articulation of the measurable value an organisation or 
individual will get from the experience.  The value proposition for the 
experiencer (the investor) equates to the perceived benefits minus perceived 
costs.  This means that the value of low carbon living is unique to the 
perspective of the investor, and the benefits and costs included in the 
economic equation are related to those likely to be perceived by the investor. 

Although the concept of value proposition was originally drawn from a 
marketing based approach to understand the creation of products and 
services valued highly by the defined market, the concept has also been used 
to understand the value of environmentally sustainable actions and activities 
to the market. 

This literature review has investigated the documentation of benefits and 
costs associated with the likely experiences associated with low carbon living.  
Evidence from both energy and non-energy related impacts has been 
identified and discussed. 

The economic costs and benefits of energy efficient and thermally comfortable 
homes, and those utilising renewable energy technologies is relatively well-
known with a rich history of Australian and international literature, and with 
evidence available from various climate zones and building typologies.  The 
value of various energy related actions has been monetised, albeit for a 
limited range of factors, from both a private and societal perspective. 

The non-energy related experience of low carbon living is less prevalent in the 
literature, although coverage of some health and productivity related impacts 
is documented, and the literature provides some discussion about the value of 
creating a sense of community.  The monetisation of non-energy impacts is 
less clear, with few methodologies or values documented. 

The proposed work program for the Adelaide Living Laboratory provides a 
unique opportunity to expand the global knowledge base on the value 
proposition of low carbon living, and to address some gaps in the literature. 
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