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Executive Summary 
Wastewater treatment plays a pivotal role in the protection of public and environmental health in urban 
precincts and in the recovery of scarce water and energy resources for an increasingly urban and growing 
global population.  Yet wastewater treatment operations are among the most energy-intensive within urban 
precincts and so there is considerable scope to optimise wastewater treatment plants to improve their energy 
efficiency and reduce associated carbon emissions and broader environmental impacts.  New and emerging 
wastewater treatment technologies offer the promise of improved treatment outcomes, but it is important for 
industry to fully understand the performance of these new technologies across a range of criteria before 
implementation. 

This project has undertaken research into two core areas of relevance to the Australian water industry: 

1) Energy efficiency in wastewater treatment via energy benchmarking methodology; and 

2) Investigating the performance of aerobic granular sludge technology for wastewater treatment. 

For the first research component, the project has produced a comprehensive, critical review of international 
energy benchmarking methodology in the water industry internationally.  This review delivers for the first time 
a complete understanding of the development, evolution and application of European (predominantly 
German) energy benchmarking methods, unlocking a rich and valuable, but previously inaccessible, 
knowledge base for an international industry audience.  The review gives detailed summaries of the key 
information and energy benchmarks required by water industry practitioners to enable them to perform with 
confidence their own WWTP energy assessment and optimisation activities to help achieve best practice 
WWTP energy efficiency.  A comprehensive reference library resource for the water industry including 
resources relating to low energy/carbon wastewater treatment and water recycling operations has also been 
produced as a complement to this review. 

Next the project utilised a national dataset of the energy performance of some 244 Australian wastewater 
treatment plants to develop a suite of new and updated WWTP energy benchmarks for industry to use in 
future energy benchmarking assessments and efficiency optimisations.  While preliminary, these 
benchmarks represent a first step towards the development of Australian-specific energy benchmark key 
performance indicators for the local water industry.  For the first time, electricity-related carbon emissions 
intensity performance data are also benchmarked for Australian wastewater treatment operations at both a 
state and national level.   

Finally, the financial and environmental performance of two wastewater treatment systems was investigated 
using data gathered from full-scale Australian WWTPs as a case study.  The operating costs of two 
contrasting disinfection technologies (ultraviolet light and chlorine) was compared, with chlorine some 10-fold 
lower cost that ultraviolet disinfection.  The environmental performance of two contrasting wastewater 
treatment systems were also compared: state-of-the-art membrane bioreactor technology, compared to 
conventional activated sludge technology.  Comprehensive data were gathered on both treatment systems 
relating to their construction and operation and performance assessed via environmental life cycle 
assessment.  Preliminary results across the seven impact categories suggest lower environmental impacts 
from conventional activated sludge operations compared to the membrane bioreactor process, with the 
exception of the ozone depletion potential impact category.  Information from this case study investigation 
provides the water industry with new insights into the economic and environmental performance of key 
wastewater treatment processes and systems for the sustainable planning and delivery of its future WWTP 
operations. 

The second research component of the project involved pilot-scale research investigations into the 
performance of an emerging wastewater treatment technology – aerobic granular sludge.  This technology is 
one of emerging interest to the Australian water industry, particularly for retrofitting of existing treatment 
operations for conversion to aerobic granular sludge; however, gaps in our understanding of this technology 
remain and so formed the basis for this component of project research.  Research done to understand the 
role of wastewater feeding strategy (anaerobic or split anaerobic–aerobic) on aerobic granular sludge 
development and functional performance showed for the first time that a dedicated anaerobic feed is not 
universally required for successful aerobic granular sludge development and operation.  New insights into 
the functional microbiology of aerobic granular sludge were also delivered in the context of high saline 
wastewater treatment.  These findings will be of value to water industry members planning to retrofit existing 
conventional activated sludge-based processes to operate with aerobic granular sludge. 
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Next the capacity of aerobic granular sludge operations to treat and remove microbial pathogens was 
assessed.  Such information on microbial pathogen removal performance during wastewater treatment is 
crucial for the water industry to know in order to be able to maintain adequate downstream treatment and 
disinfection for public health protection upon effluent discharge to receiving waterways, or during effluent 
reuse in water recycling schemes.  Results confirmed for the first time that the adoption of aerobic granular 
sludge operation would not adversely impact water quality in such a way that could impact downstream 
tertiary disinfection processes or compromise public health protection barriers already in place for traditional 
conventional activated sludge-based systems.   

Finally, the dynamics of direct emissions of the potent greenhouse gas nitrous oxide was assessed for 
aerobic granular sludge operations and compared side-by-side to conventional activated sludge-based 
operations.  Results showed that when operated under operationally-relevant organic loading rates, nitrous 
oxide emissions were comparable between aerobic granular sludge and conventional activated sludge-
based operations.  Exceeding a loading rate of 0.6 kg chemical oxygen demand/m3/d, however, resulted in 
higher emissions of nitrous oxide by aerobic granular sludge operations compared to conventional activated 
sludge.  This aspect of the research is still ongoing, but once complete, results will help the water industry 
better understand the full environmental consequences of any future technological transition to aerobic 
granular sludge-based wastewater treatment processes. 
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1. Introduction 
Wastewater treatment plays a pivotal role in the protection of public and environmental health in urban 
precincts and in the recovery of scarce water and energy resources for an increasingly urban and growing 
global population.  With the progressive implementation of increasingly stringent human and environmental 
health regulations in recent decades, the water industry has seen a steady progression from simple low-cost 
wastewater treatment processes, to more advanced, highly engineered processes of increasing 
technological complexity and energy use intensity (Chang et al. 2008).  This progressive intensification of 
energy demands for more advanced wastewater treatment has been brought sharply into focus in recent 
years by dramatic increases in the cost of energy, including electricity, as well as increasing volatility in 
energy tariffs (Escribano et al. 2011).  At the same time, there has been an increased environmental 
awareness within the water sector (e.g. Lundie et al., 2008), including a focus on understanding and 
minimising greenhouse gas (GHG) emissions as water utilities pursue strategic objectives of carbon 
neutrality (Foley et al. 2010).  In combination, these factors have increased the pressure on energy-hungry 
industries and facilities like wastewater treatment plants (WWTPs) to look for ways to minimise operational 
energy use and improve the overall sustainability of their operations.  These considerations apply also to 
new and emerging wastewater treatment technologies and there is a need to better understand the 
technological and environmental performance of such technologies prior to industry adoption.  As such, the 
overarching objective of this research project was to provide the water industry with new and improved 
information to facilitate more energy-efficient, cost-effective and environmentally-benign wastewater 
treatment operations into the future. 

 

2. Changes to project scope 
In consultation with water industry stakeholders, changes were made to the original project scope in order to 
better reflect the needs of the industry partners and also to capitalise on areas of expertise and research 
facilities available within the industry steering committee (see Table 1).  Key among these were: 

• a shift in focus from energy efficiency in water recycling operations, to energy efficiency in wastewater 
treatment operations; and 

• the addition of a new project research theme in the form of an emerging wastewater treatment process 
known as ‘aerobic granular sludge’ (AGS). 

 

These changes have given the project a more diversified scope and have resulted in enhanced industry 
impact.  These two key project themes are presented separately in this report: the first research theme is 
presented under the heading “Towards energy-efficient, low carbon wastewater treatment in Australia” and 
the second under the heading “Assessing treatment performance and carbon emissions profile of aerobic 
granular sludge”. 

 

Table 1.  Synopsis of original RP2017 project outputs and scope, alongside final project scope and outputs. 

Original project outputs including scope Ultimate project outputs including scope 

A comprehensive literature review of energy intensity of 
water recycling operations internationally 

A comprehensive literature review of wastewater 
treatment energy intensity and energy benchmarking 
methodology internationally 

A suite of best practice industry benchmarks for key water 
recycling technologies 

A suite of best practice industry benchmarks for key 
wastewater treatment technologies 

A comprehensive reference library database for project 
partners to use as a one-stop-shop for reference material 
relating to low energy/carbon water recycling operations 

A comprehensive reference library database for project 
partners to use as a one-stop-shop for reference material 
relating to low energy/carbon wastewater treatment and 
water recycling operations 
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Submission of journal publications based on project 
activities 

Unchanged 

An industry guidance manual on energy benchmarking 
and optimisation for low carbon/energy water recycling 

Information on the relative cost and environmental 
impacts of state-of-the-art membrane bioreactor 
wastewater treatment processes coupled to ultraviolet 
disinfection, as compared to conventional activated 
sludge coupled to chlorine disinfection 

Information on the value of instrumentation (advanced 
process control and energy sub-metering) in realising 
energy efficiency savings during water recycling (via real 
case study assessments of how instruments/ forward 
control loops have been/can be used to save energy) 

Report on energy and carbon emissions performance 
benchmarking of Australian wastewater treatment 
operations 

Industry guidance manual on the economic implications 
and benefits of true fit-for-purpose recycled water supply 

Information on the start-up, operation, functional ecology 
and long-term performance of aerobic granular sludge for 
wastewater treatment 

- Information on the microbial pathogen removal 
performance of aerobic granular sludge wastewater 
treatment and implications for downstream water 
recycling processes 

An industry seminar/workshop on low carbon/energy 
water recycling principles and practises for CRC 
stakeholders 

Seminars at industry and academic forums on 
wastewater treatment energy benchmarking and aerobic 
granular sludge 

Two PhD graduates Unchanged 
 

3. Towards energy-efficient, low carbon wastewater treatment in Australia 

Introduction to WWTP energy efficiency and energy benchmarking 
As above, many of today’s wastewater treatment systems are energy-intensive and possess considerable 
potential for operational and structural optimisation to improve their energy efficiency.  The application of 
‘energy benchmarking’ methodology presents opportunities for the water industry to reduce costs by 
enabling energy savings and energy recovery at WWTPs, whilst at the same time identifying operational 
issues for WWTP personnel to focus on to improve plant performance and future performance efficiency.  
Energy benchmarking enables different water utilities to compare their operational energy performance with 
other utilities or the broader industry, identifying the sources of performance differences for targeted 
implementation of energy efficiency improvement measures (Krampe & Trautvetter 2012; GHD 2014b).  
Energy use key performance indicators (KPIs) are developed for a range of wastewater treatment operations 
and then used by industry to ‘benchmark’ current treatment process performance and inform subsequent 
process optimisation needs for future energy efficiency savings (Krampe, 2013).  Once best practices are 
identified, the water industry will set the best practice values as targets for ongoing improvement and 
efficiency gains (de Haas et al. 2015). 

The basic premise of energy benchmarking is to collect operating energy consumption data from a given 
WWTP and then compare (benchmark) this performance level against industry performance benchmark 
values representing average (50th percentile) and best practice (10th percentile) energy efficiency 
performance.  The difference between the actual energy use and benchmark performance value represents 
the potential saving to be realised through optimisation (see Figure 1).  These 50th and 10th percentile 
benchmark values are specific to certain technology types (type classes) and sizes (size classes) of WWTPs 
to ensure proper ‘like-for-like’ comparisons. 
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Figure 1.  Conceptual overview of WWTP energy benchmarking and potential energy efficiency gains. 

 

 

Energy benchmarking today falls under the International Standard ISO 50001:2011 Energy Management 
Systems (ISO 2011).  One of the key activities in both ISO 50001 and energy benchmarking involves the 
undertaking of an initial energy review to establish an energy performance ‘baseline’.  This baseline is used 
for performance monitoring and also set improvement targets in relation to future energy performance.  
Under ISO 50001:2011 the industry is required to develop, record and maintain an energy review, and 
document the process.  Energy consumption should be analysed based on industry data, with identification 
of the areas where energy use is significant throughout the facility to determine current energy performance.  
This can be used to estimate future energy consumption and identify and prioritise opportunities for energy 
performance improvement, as required.  Adjustments to the performance baseline may be made if the 
performance indicators no longer reflect the industry energy consumption (ISO 2011).  The overall 
framework approach for energy benchmarking is shown in Figure 2.  While the ISO 50001 standard provides 
the overall framework for energy auditing and identifying areas for optimisation, it does not prescribe the 
energy performance KPIs, nor does it prescribe or recommend a standard/best practice approach to develop 
them. 

Energy benchmarking as applied to wastewater treatment was first developed in Europe in the 1990s and 
has only recently (circa 2012) begun to be applied by Australian water utilities (Krampe 2013), including two 
national benchmarking projects coordinated by the water industry’s peak body—The Water Services 
Association of Australia (WSAA)—to date (GHD 2014; GHD 2017).  These Australian benchmarking studies 
have resulted in the collection of a considerable data resource on the energy use profiles of some 244 
WWTPs nationally – data that was made available to this project for the development of new and updated 
WWTP energy benchmarks. 

So far, this Australian energy benchmarking work has applied existing European methods and benchmarks 
to Australian conditions, which in many cases affects the relevance and scale of identified energy efficiency 
opportunities.  For example there are important differences in how wastewater treatment processes perform, 
the regulated treatment targets and the nature of the wastewater itself which can affect the energy use 
performance of WWTPs.  New locally-relevant energy benchmarks were, therefore, needed for use by the 
Australian water sector to be able to exploit maximum value from energy efficiency activities and this was a 
key driver for this component of RP2017 research. 
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Figure 2.  Conceptual overview of WWTP energy benchmarking and efficiency savings. 

 

 

The research objectives and outputs of this project component were: 

1. Comprehensive review of energy benchmarking literature and practice internationally; 

2. A comprehensive reference library resource for industry on material relating to low energy/carbon 
wastewater treatment and water recycling operations; 

3. A suite of new and updated Australian-relevant energy benchmark KPIs for Australian WWTPs using 
local industry data; 

4. Benchmarking assessment of electricity-related carbon emissions intensity of Australian WWTPs; 

5. Provide new information on the relative cost and environmental impacts of state-of-the-art membrane 
bioreactor wastewater treatment processes coupled to ultraviolet disinfection, as compared to 
conventional activated sludge coupled to chlorine disinfection for wastewater treatment and water 
recycling (the “Full-scale WWTP case study investigation”). 
 

Brief snapshot summaries of each of these research outputs are given below, with full details for each output 
presented as separate appendices to the report (where completed and publication restrictions do not 
preclude inclusion). 

 

Snapshot – Research output 1: Comprehensive review of energy benchmarking literature and 
practice internationally 
The first part of the project has involved a comprehensive, critical review of international energy 
benchmarking methodology for communication to the water industry both nationally and internationally.  
Energy benchmarking has been applied internationally and has become common practice in many countries, 
especially in Europe where the benchmarking methodologies originating in Switzerland and Germany have 
been widely applied and accepted.  There are important differences between these two approaches, 
however, with the Swiss methodology focused on model WWTP plant-derived theoretical energy 
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performance value requirements for optimal operating conditions, while the German approach takes a 
statistical approach based on industry-wide performance data to developing energy performance 
benchmarks.  Beyond German-speaking Europe, the level of understanding surrounding these seminal 
energy benchmarking approaches has so far been limited.  Furthermore, where these methods have been 
applied internationally, they have in some instances been misinterpreted and improperly applied by the water 
industry which may hinder the pursuit of best practice WWTP energy efficiency.   

This critical review delivers for the first time a complete understanding of the development, evolution and 
application of seminal European (predominantly German) energy benchmarking methods, unlocking a rich 
and valuable, but previously inaccessible, knowledge base for an international industry audience.  The 
review also provides detailed summaries of the key information and energy benchmarks required by water 
industry practitioners to enable them to perform with confidence their own WWTP energy assessment and 
optimisation activities to help achieve best practice WWTP energy efficiency.  As this research output is 
currently under consideration for publication in the journal Water Conservation Science and Engineering, we 
are unable to provide the complete review text as a report appendix; however, information can be provided 
on request and interested parties should contact Dr Michael Short (michael.short@unisa.edu.au).  The 
citation for this research output is: 

• Clos, I., Krampe, J., Alvarez-Gaitan, J.P., Saint, C.P., Short, M.D. (submitted) Energy benchmarking 
as a tool for energy efficient wastewater treatment: reviewing international applications with a focus 
on European methodology. Water Conservation Science and Engineering.  

 

Snapshot – Research output 2: Reference library resource on energy efficiency and energy 
benchmarking in wastewater treatment and water recycling operations 
During the course of the project, a substantial amount of literature (scholarly and grey) was reviewed and 
collated in subject areas relating to energy efficiency and energy benchmarking in wastewater treatment and 
water recycling operations.  A comprehensive reference library with some 420 individual resources has been 
produced and is provided in Appendix A. 

 

Snapshot – Research output 3: New and updated Australian-relevant energy benchmark KPIs for 
Australian WWTPs using local industry data 
Another phase of the project has involved the use of a comprehensive national WWTP electricity use 
dataset, collected as part of a national water industry benchmarking assessment coordinated by the Water 
Services Association of Australia, to develop a suite of locally-relevant, Australian energy performance 
benchmarks for a range of key wastewater treatment plant sizes and plant types.  Performance data 
collected from each of the 244 WWTP related to the period between July 2015 and June 2016.  This suite of 
new and updated Australian energy benchmarks will enable water industry members to benchmark their 
energy use performance against their industry’s own performance metrics, helping to unlock future energy 
and GHG emissions savings from wastewater treatment operations.  The median (50th percentile) energy 
performance benchmarks for Australian WWTPs are given in Table 2 for the various WWTP size classes 
(SC) based on the number of connected population equivalents and plant types (T).  Benchmarks are based 
on WWTP electrical energy use (kWh/year) and integrated with the population equivalent (PE) size 
calculated from the influent wastewater load to give benchmark units of kWh/(PE×y).  Plant types follow the 
Australian classification of GHD (2017) as follows: 

T1 – Activated sludge treatment with separate sludge stabilisation, including those with primary sedimentation, 
anaerobic digestion (or alternative) and on-site cogeneration (on-site energy produced from biogas).  
Alternative sludge stabilisation includes: incineration; covered anaerobic lagoons; chemical (e.g. lime) 
treatment; etc. 
T2 – Activated sludge treatment with separate sludge stabilisation, including those with primary sedimentation, 
anaerobic digestion (or alternative) but without onsite co-generation (no on-site energy produced from biogas).  
Alternative sludge stabilisation includes: incineration, covered or uncovered anaerobic lagoons; chemical (e.g. 
lime) treatment; etc. 

mailto:michael.short@unisa.edu.au
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T3 – Extended aeration activated sludge, including aerobic digestion.  Sub-types include: 
T3.1 – Compartmentalised (all types, including those for biological nutrient removal configurations) 
and with clarifiers, but excluding Subtypes 3.2 to 3.5 below; 
T3.2 – Oxidation ditch-type activated sludge (including ditches with external compartments such as 
anaerobic or selector reactors) and with clarifiers; 
T3.3 – Intermittent activated sludge processes (e.g. sequencing batch reactors, intermittent decant 
extended aeration, intermittent decant aerated lagoon); 
T3.4 – Membrane bioreactors (MBR); 
T3.5 – Moving bed biofilm bioreactors (MBBR), where main aeration zone is MBBR (e.g. excludes 
tertiary MBBR). 

T4 – Trickling filters.  Sub-types include: 
T4.1 – Trickling filters only; 
T4.2 – Trickling filters in combination with activated sludge. 

T5 – Lagoon and/or wetland systems.  Sub-types include: 
T5.1 – Aerated lagoons 
T5.2 – Lagoon and/or wetland systems without aeration 

 
As can be seen in the benchmarks in Table 2, energy efficiency generally increases with increasing WWTP 
size due to recognised economies of scale effects afforded to larger plants relating to increased process and 
equipment efficiency.  Type 4 and 5 WWTPs also tended to have lower energy benchmark values due to the 
lower technology nature of these systems (trickling filter or lagoon-based).  Notable in Table 2 is that many 
benchmark values are drawn from small sample sizes of <5 WWTPs and so the quality of these benchmark 
values is low.  For comparison, equivalent studies in some European countries have drawn on datasets in 
excess of 1,000 WWTPs, whereas the current benchmark data are drawn from 244 WWTPs.   

The values in Table 2 remain under development and work is ongoing to refine them and develop additional 
complementary benchmarks for best practice (10th percentile) performance across the full range of WWTP 
type configurations.  Once finalised, these benchmark values can be used by Australian water industry 
professionals to undertake their own energy benchmarking performance assessments to better understand 
energy use performance and assess the need for future energy efficiency measures at individual WWTPs.   
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Table 2.  Summary of 50th percentile energy benchmarks (kWh/PE×y) for Australian WWTPs according to plant size class (SC) and plant type (T). 

WWTP 
type 

<1000 PE 
[SC 1] 

1000–5000 PE 
[SC 2] 

5001–10000 PE 
[SC 3] 

10001–100000 PE 
[SC 4] 

10001–20000 PE 
[SC4.1] 

20001–50000 PE 
[SC4.2] 

50001–100000 PE 
[SC4.3] 

>1000000 PE 
[SC 5] 

T1 - - - 38 37* 43* 38* 38 

T2 42* - 90* 59 57* 56* 56 51 

T3.1 231* 135* 125* 59 91* 64 49 44 

T3.2 424* 85* 104* 50 63 60 44* 32* 

T3.3 132* 86 64* 49 74 51 35 38 

T3.4 588* 256 159* 65 279* 72* 54* - 

T4.1 124* 21* 27* 15* 26* - - - 

T4.2 - - 2.4* 47* 25* 54* 39* - 

T5.1 52 70 40 32 47* 42* - 9.7* 

T5.2 53* 13 74* 15* 29* - - - 

PE – population equivalent; SC – size class; T – plant type; * – low sample size (<5 WWTPs) so benchmark data quality is considered highly uncertain 
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Snapshot – Research output 4: Benchmarking assessment of electricity-related carbon emissions 
intensity of Australian WWTPs 
This research output provides a synopsis of Australian WWTP energy benchmarking national assessments 
undertaken by the water sector, focusing on the two major national benchmarking surveys in 2014 and 2017 
date (GHD 2014; GHD 2017).  Energy use and, for the first time, electricity-related carbon emissions 
intensity performance data are presented for wastewater treatment operations covering the vast majority of 
the Australian population at both a state and national level.  National median per capita equivalent specific 
energy consumption for wastewater treatment was approx. 56 kWh/population equivalent/year, with an 
associated average per capita equivalent carbon emission intensity of 51 kg CO2-e/population 
equivalent/year.  The work concludes with a future outlook for best practice WWTP energy performance and 
benchmarking in the water sector.  Full details of this research output are provided in Appendix B.  The 
citation for this research output is: 

• Clos I., Alvarez-Gaitan J.P., Saint C.P., Short M.D. (2019) Energy Benchmarking for Efficient, Lower 
Carbon Wastewater Treatment Operations in Australia. In: Newton P., Prasad D., Sproul A., White 
S. (eds) Decarbonising the Built Environment. Palgrave Macmillan, Singapore. 
https://doi.org/10.1007/978-981-13-7940-6_16 

 

Snapshot – Research output 5: Full-scale WWTP case study investigation 
The best and most sustainable outcome is known to not always be at the technological limit or ‘limit of best 
practice’ for water treatment systems, and often the protection of local environmental quality as driven by 
tighter water sector regulation, comes at a cost of broader environmental impacts (Foley et al. 2010).  As 
above, with the shift towards more advanced and highly engineered wastewater treatment processes, comes 
a need to better understand the full environmental consequences of these technological advancements on 
the overall treatment system (as compared to the previous conventional treatment norm).  Life cycle 
assessment (LCA) offers a standardised means by which to quantitatively assess the full life cycle 
environmental performance of products or systems (ISO, 2006).   

Working with water industry project partners, this project research component sought to investigate the 
financial and environmental performance of two wastewater treatment systems using data gathered from full-
scale Australian WWTPs as a case study for comparison of state-of-the-art membrane bioreactor (MBR) 
wastewater treatment technology coupled to ultraviolet (UV) disinfection, as compared to conventional 
activated sludge (CAS) coupled to chlorine disinfection for wastewater treatment.  Working closely with 
industry stakeholders, comprehensive data were gathered on both the CAS and MBR WWTPs relating to 
their construction and operation.  Data included financial cost and material inventories to enable full 
economic and environmental assessments to be undertaken.  The two WWTPs receive a common influent 
and are of comparable size and loading (Table 3), allowing for representative comparisons.  

 

Table 3.  Summary of wastewater treatment plant size and loading rates for comparison of chlorine versus 
UV disinfection treatment. 

WWTP and disinfection process Connected population 
equivalents 

Daily flow (ML) Daily organic load 
(kg BOD5) 

CAS + chlorine disinfection 85,000 17 3,750 

MBR + UV disinfection 65,000 13 2,950 

 

Key summary results of the comparative cost assessment for operation of chlorine versus UV disinfection 
systems at the case study WWTP are given in Table 4 and Figure 3 below.  As shown, flow-normalised costs 
involved with operating the UV disinfection process at the case study WWTP were substantially greater 
(some 10-fold higher) than the equivalent chlorine-based disinfection process, owing to the technological 

https://doi.org/10.1007/978-981-13-7940-6_16


18 

 

complexity of the UV system.  Regarding the percentage distribution of costs, labour (52%) and materials 
(33%) dominated the cost profile of chlorine disinfection, whereas for the UV disinfection system, labour 
costs were a comparatively modest fraction of the total (15%), while materials (46%) and energy (36%) 
dominated the cost profile.  Overall, this information will be of value to water industry professionals in the 
planning of wastewater treatment and water recycling systems, to better understand the costs of these 
disinfection processes and make informed decisions about the cost-effective delivery of fit for purpose 
wastewater treatment and recycling operations.  While important, cost considerations also need to be 
considered alongside possible local environmental constraints linked to the use and discharge of residual 
chlorine to receiving environments.  

 

Table 4.  Summary of operating cost data ($AU normalised per megalitre of daily treated wastewater flow) for 
the full-scale WWTP case study comparison of chlorine disinfection versus UV disinfection, showing 
breakdown per financial year (during the period 2013–2017) and cost type. 

 
Financial year UV disinfection Chlorine disinfection 

Labour 2013 24 525 
 

2014 765 289 
 

2015 1,321 298 
 

2016 3,327 515 
 

2017 2,197 818 
 

TOTAL 7,634 2,445 
 

Avg. annual 1,527 489 

Materials 2013 212 432 
 

2014 15 350 
 

2015 2,677 53 
 

2016 17,988 150 
 

2017 2,668 537 
 

TOTAL 23,560 1,523 
 

Avg. annual 4,712 305 

Motor vehicles 2013 -    -    
 

2014 15 11 
 

2015 60 9 
 

2016 190 57 
 

2017 232 103 
 

TOTAL 497 181 
 

Avg. annual 99 36 

Sub-contractors 2013 -    -    
 

2014 57 -    
 

2015 231 -    
 

2016 27 -    
 

2017 40 527 
 

TOTAL 355 527 
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Avg. annual 71 105 

Energy 2013 5,195 -    
 

2014 4,561 -    
 

2015 2,884 -    
 

2016 2,868 -    
 

2017 2,916 -    
 

TOTAL 18,425 -    
 

Avg. annual 3,685 -    

Other 2013 4 7 
 

2014 47 4 
 

2015 127 -    
 

2016 407 1 
 

2017 116 7 
 

TOTAL 701 18 
 

Avg. annual 140 4 

TOTAL 2013 5,435 964 
 

2014 5,459 654 
 

2015 7,300 361 
 

2016 24,808 723 
 

2017 8,170 1,993 
 

TOTAL 51,172 4,695 
 

Avg. annual 10,234 939 
 

Figure 3.  Summary of relative cost data for the full-scale WWTP case study comparison of chlorine 
disinfection versus UV disinfection, showing cost breakdown per cost type and percent contribution to total 
cost. 
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Preliminary results of the comparative environmental life cycle performance assessment for the comparison 
of conventional activated sludge operation with the membrane bioreactor treatment process are given in 
Table 5 and Figure 4.  Overall, environmental impacts across the seven impact categories suggest lower 
environmental impacts from CAS operations compared to the MBR process, with the exception of the ozone 
depletion potential impact category.  Lower electricity use during CAS treatment contributed to the approx. 
30% lower global warming potential (carbon footprint) in this assessment, but it should be noted that 
differences in grid electricity supply, and associated electricity emission factor, in other jurisdictions will affect 
the magnitude of these results.  Together with the information on comparative disinfection process costs, 
results from this research output (once finalised) will provide the water industry with new insights into the 
economic and environmental performance of key wastewater treatment processes and systems for the 
sustainable planning and delivery of its future WWTP operations. 

The above results for this project output are preliminary since research remains underway as part of an 
active PhD.  Information can be provided on request once research has been finalised and interested parties 
should contact Dr Michael Short (michael.short@unisa.edu.au).   

 

Table 5.  Summary of preliminary life cycle impact assessment results for the full-scale WWTP case study 
comparison of conventional activated sludge (CAS) with membrane bioreactor (MBR) treatment process 
(absolute impacts given per unit of 1 m3 of treated wastewater). 

Impact category CAS MBR Unit 

Global warming potential - GWP100 91.880 121.41 kg CO2-equivalents 

Fossil depletion potential - FDP 39.777 67.079 kg oil-equivalents 

Feshwater eutrophication potential - FEP 0.0319 0.0440 kg P-equivalents 

Human toxicity potential - HTP 26.158 31.217 kg 1,4-DCB-equivalents 

Marine eutrophication potential - MEP 0.0825 0.1042 kg N-equivalents 

Metal depletion potential - MDP 9.7464 10.991 kg Fe-equivalents 

Ozone depletion potential - ODP 0.000007 0.000006 kg CFC-11-equivalents 

 

 

mailto:michael.short@unisa.edu.au
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Figure 4.  Summary of preliminary life cycle impact assessment results for the full-scale WWTP case study 
comparison of conventional activated sludge (CAS) with membrane bioreactor (MBR) treatment process 
(CAS-normalised impacts given per unit of 1 m3 of treated wastewater). 

 

 

4. Assessing treatment performance and carbon emissions profile of aerobic 
granular sludge 

Background to aerobic granular sludge technology 

Aerobic granular sludge (AGS) is a relatively new type of wastewater treatment technology which selects for 
and uses large microbial granules, as opposed to the current treatment process norm of conventional 
activated sludge (CAS) which uses small microbial flocs (Figure 5).  The benefits of AGS over CAS include: 

• Excellent biomass settling (i.e. better separation of solids from water phase); 

• Ability to retain and operate higher biomass concentrations (i.e. higher mixed liquor biomass 
concentrations for enhanced treatment efficacy); 

• Potential for shorter reactor operating cycle times which translates to increased WWTP hydraulic 
capacity; 

• Reduced physical footprint of WWTP, with associated possibility of cost savings (capital and 
operating) and lower energy use requirements. 

 

AGS technology was first discovered in the 1990s, with the first full-scale AGS wastewater treatment facility 
commencing operation in 2010 in the Netherlands (Wang et al. 2017).  To date, there has only been one full-
scale AGS facility commissioned in Australia, with this facility built in the town of Kingaroy, Queensland 
(http://www.aquatecmaxcon.com.au/news/268-first-australasian-neredar-plant).  The technology is one of 
emerging interest to the Australian water industry, particularly for retrofitting of existing CAS operations for 
conversion to AGS.  However, despite the advances in our understanding of AGS formation and 
performance over the past two decades (Bengtsson et al. 2018), there are still gaps in our understanding of 
AGS performance in key areas of relevance for the water industry and several of these gaps formed the 
basis for this component of the project’s research. 
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Figure 5.  Comparison of conventional activated sludge flocs (left) versus aerobic granular sludge granules 
(right). 

 
 
The research objectives and outputs of this project component were: 

6. Understanding the role of wastewater feeding strategy (anaerobic or split anaerobic–aerobic) on AGS 
development and functional performance; 

7. Implications of AGS versus CAS operation on microbial pathogen removal performance and the 
subsequent downstream implications for water recycling operations; 

8. Implications for direct process greenhouse gas emissions (nitrous oxide) in AGS versus CAS. 

 

Brief snapshot summaries of each of these research outputs are given below, with full details for each output 
presented as separate appendices to the report (where possible). 

 

Description of the AGS research facility 
A pilot-scale wastewater treatment research facility was constructed and operated by the project’s industry 
partner SA Water at their Bolivar WWTP in Adelaide, South Australia (  
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Figure 6).  This facility consisted of two pilot-scale Perspex sequencing batch reactors (SBRs) with process 
control via a Siemens programmable logic controller and touchscreen to control cycle times, aeration and 
other key operating conditions as needed for AGS development.  Having two parallel pilot-scale reactors 
allowed for true side-by-side comparisons of AGS with representative conventional activated sludge 
operations and at sufficient scale to give industry confidence in the results.  
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Figure 6.  Picture of the pilot research facility at the SA Water Bolivar WWTP site (A) and schematic of the 
pilot facility operation and process control (B). 

 

 

Snapshot – Research output 6: Understanding the role of wastewater feeding strategy (anaerobic 
or split anaerobic–aerobic) on AGS development and functional performance 
The successful development of AGS for wastewater treatment has been linked to a dedicated anaerobic 
feeding phase, which enables key microbes such as poly-phosphate accumulating organisms and glycogen 
accumulating organisms to gain a competitive advantage over floc-forming organisms as exist in 
conventional activated sludge processed.  This reliance on a dedicated anaerobic feeding step presents 
practical and engineering challenges for how SBR wastewater treatment plants are operated, particularly in 
the context of future retrofitting of AGS to replace conventional activated sludge processes.  Research 
undertaken as part of this project output compared the performance of two feeding strategies (i.e. a split 
anaerobic–aerobic feed and a traditional dedicated anaerobic feed) and assessed the subsequent 
performance with regard to AGS formation and stability, nitrogen removal performance and microbial 
ecology.  Results showed that AGS could be established and maintained when using a split anaerobic–
aerobic feed at low organic loading rates.  Additionally, is was revealed that AGS start-up time and nitrogen 
removal performance were comparable under both a split anaerobic–aerobic feed and dedicated anaerobic 
feed.  Analyses of the microbial community ecology based on whole-of-community genetic profiling and 
targeted analysis of functional genes specific for key nitrifying and denitrifying microorganisms, showed that 
the two different feed strategies had only subtle impacts on both the overall community composition and 
functional microbial ecology in terms of key nitrifying and denitrifying bacteria and Archaea; however, there 
were notable ecological differences when comparing different sized AGS granules.  In contrast to previous 
work, a large enrichment in poly-phosphate accumulating organisms in AGS was not observed in the high-
saline wastewater, which supported the observation of low phosphate removal performance.  AGS biomass 
was, however, substantially enriched in sulfide-oxidising bacteria, which was complemented by elemental 
analysis showing the presence of elemental sulfur precipitation within the AGS granules. 

Overall, outcomes of this research component demonstrate for the first time that a dedicated anaerobic feed 
is not universally required for successful AGS development and operation.  New insights into the functional 
microbiology of AGS were also delivered in the context of high saline wastewater treatment, which may have 
increasing relevance within the context of climate change adaptation for coastal communities in the coming 
decades.  These findings will be of value to water industry members planning to retrofit existing conventional 
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activated sludge-based SBRs to operate with AGS.  Full details of this research output are provided in 
Appendix C and Appendix D.  The citation for these research outputs are:  

• Thwaites, B.J., Reeve, P., Dinesh, N., Short, M.D., van den Akker, B. (2017) Comparison of an 
anaerobic feed and split anaerobic–aerobic feed on granular sludge development, performance and 
ecology. Chemosphere 172: 408–417; https://doi.org/10.1016/j.chemosphere.2016.12.133 

• Thwaites, B.J., van den Akker, B., Reeve, P., Short, M.D., Dinesh, N., Alvarez-Gaitan, J.P., Stuetz, R. 
(2018) Ecology and performance of aerobic granular sludge treating high-saline municipal 
wastewater. Water Science & Technology, 77(4): 1107–1114; https://doi.org/10.2166/wst.2017.626. 

 

Snapshot – Research output 7: Implications of AGS versus CAS operation on microbial pathogen 
removal performance and the subsequent downstream implications for water recycling operations 

Aerobic granular sludge is an emerging treatment technology for both new WWTPs and also as a 
prospective retrofit technology solution to existing WWTPs for improved treatment performance, enhanced 
process stability and increased hydraulic capacity.  Given its emerging technology status, there are no prior 
investigations on the ability of AGS to treat and remove microbial pathogens.  Such information on microbial 
pathogen removal performance during wastewater treatment is crucial for the water industry to know in order 
to be able to maintain adequate downstream treatment and disinfection for public health protection upon 
effluent discharge to receiving waterways, or during effluent reuse in water recycling schemes.  Research 
done as part of this project output compared the removal performance of commonly used microbial pathogen 
surrogates (sulfite-reducing clostridia spores, f-RNA bacteriophage, Escherichia coli and total coliforms) by 
AGS and CAS during wastewater treatment operations, from the initial start-up phase, through to mature 
operation.  Results showed that AGS performed as well as CAS for the removal of all microbial surrogates, 
except for sulfite-reducing clostridia spores which were removed more effectively by AGS than for CAS.  This 
world-first assessment of microbial pathogen removal performance by AGS showed that AGS is capable of 
meeting or exceeding existing equivalent CAS-based health-based targets for pathogen removal in the 
context of water recycling.  Results also confirmed that AGS operation did not adversely impact the 
secondary effluent water quality in a way that would have implications for downstream tertiary disinfection 
processes.  Overall, findings from this research output confirmed for the first time that the adoption of AGS 
operation would not adversely impact water quality in such a way that could impact downstream tertiary 
disinfection processes or compromise public health protection barriers already in place for CAS systems.  
These findings provide the water industry with additional confidence in the robustness of AGS-based 
wastewater treatment processes for both environmental and public health protection.  Full details of this 
research output are provided in Appendix E.  The citation for this research output is: 

• Thwaites, B.J., Short, M.D., Stuetz, R.M., Reeve, P.J., Alvarez-Gaitan, J.-P., Dinesh, N., van den 
Akker, B. (2018) Comparing the performance of aerobic granular sludge versus conventional 
activated sludge for microbial log removal and effluent quality: implications for water reuse. Water 
Research, 145: 442–452; https://doi.org/10.1016/j.watres.2018.08.038. 

 

Snapshot – Research output 8: Implications for direct process greenhouse gas emissions (nitrous 
oxide) in AGS versus CAS 

Nitrous oxide (N2O) is an important trace gas that plays an important role in several aspects of atmospheric 
chemistry and climate.  N2O is a both a priority ozone-depleting substance and a potent greenhouse gas 
(Kanter et al. 2013) and the water industry has in recent years, through ongoing international research, 
become increasingly aware of its importance in particular in relation to the sector’s carbon emissions profile 
(Kampschreur et al. 2009; Law et al. 2012; Ribera-Guardia et al. 2019).  So far, there is very little information 
available internationally on the emissions of N2O from AGS-based wastewater treatment processes and of 
the limited available studies, many have used synthetic wastewater and laboratory-scale reactors with 
unrealistic loading regimes, bringing into question the industry-relevance of the findings.  Accordingly, 
research undertaken as part of this research output investigated the N2O emissions dynamics of AGS when 
operated under operationally-relevant loading rates and compared to conventional activated sludge at pilot 
scale using real municipal wastewater.  The changes in N2O emissions were characterised with regards to 

https://doi.org/10.1016/j.chemosphere.2016.12.133
https://doi.org/10.2166/wst.2017.626
https://doi.org/10.1016/j.watres.2018.08.038
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operational conditions such as nitrogen loading and dissolved oxygen concentration, and were contrasted 
with N2O respective emissions from parallel conventional activated sludge operation.   

Results showed that the removals of incoming ammonia nitrogen and organic load (as measured by 
chemical oxygen demand) were comparable in both AGS and CAS reactors at 99% and 90% respectively.  
Regarding N2O emissions, results showed that when the reactors were operated at low organic loading rates 
of <0.6 kg chemical oxygen demand/m3/d, the N2O emissions were comparable between AGS and CAS 
(Figure 7).  However, exceeding this loading of 0.6 kg chemical oxygen demand/m3/d resulted in an 
increased N2O production by AGS relative to CAS.  It was unclear from the study to what extent the higher 
observed N2O emissions from AGS were a result of the pilot-scale operation and subsequent aeration 
process control limitations, so it was suggested that future work should look to further understand the impact 
of this effect, or ideally test emissions from full-scale reactors.  Overall, findings from this research output 
have expanded our knowledge on the N2O emissions consequences of AGS, knowledge which will help the 
water industry better understand the full environmental consequences of any future transition from CAS to 
AGS-based wastewater treatment processes. 

The results for this research output are preliminary since research under this project output currently remains 
underway as part of an active PhD.  Information can be provided on request once research has been 
finalised and interested parties should contact Dr Michael Short (michael.short@unisa.edu.au).   

 

Figure 7.  Total N2O-N flux (y-axis; grams N2O-N/hour/m2) versus ammonium loading rate (kg NH3-N/m3/day) 
for CAS and AGS reactors.  Encircled data are considered erroneously high due to thermal effects from 
reactor temperatures exceeding 25°C. 
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Appendix B.  Research output 4: Benchmarking assessment of electricity-related carbon emissions 
intensity of Australian WWTPs 
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Decarbonising the Built Environment. Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-13-
7940-6_16 

  

https://doi.org/10.1007/978-981-13-7940-6_16
https://doi.org/10.1007/978-981-13-7940-6_16


49 

 

Title: Energy benchmarking for efficient, lower carbon wastewater treatment operations in Australia 
 

Authors: Ilda Clos, Juan Pablo Alvarez-Gaitan, Christopher P. Saint, Michael D. Short 
 

Abstract: Wastewater treatment operations are energy-intensive and often require operational and 
design optimisation to improve their energy efficiency.  The application of an energy benchmarking 
approach presents opportunities for wastewater treatment plants (WWTPs) to reduce costs by 
enabling energy savings and energy recovery, whilst at the same time identifying operational issues 
for WWTP personnel to focus on to improve plant performance.  Energy benchmarking broadly seeks 
to help the water sector identify and adopt best practice efficiency in the pursuit of better industry 
performance.  Energy benchmarking methodology has emerged from central Europe since the mid-
1990s and is now common practice in many countries, especially in Europe where such methods are 
now widely applied as accepted industry practice.  This chapter begins with an introduction to energy 
efficiency and management in wastewater treatment.  This is followed by a synopsis of Australian 
energy benchmarking and optimisation efforts to date following European methodologies, including 
two national WWTP energy assessments conducted by the water sector in 2014 and 2016 
respectively.  The chapter finishes with an assessment of electricity-related greenhouse gas emissions 
from Australian wastewater treatment operations since energy benchmarking efforts begun and a 
future outlook for best practice WWTP energy performance and benchmarking in the water sector. 
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Introduction 
Due to the progressive development and implementation of ever more stringent human and 

environmental health regulations throughout the second half of the 20th century, the water industry has largely 
been focused on meeting wastewater treatment and effluent quality criteria for proper regulatory compliance 
(Jenkins & Wanner, 2014), with less emphasis placed on efficiency and innovation in its operations until quite 
recently.  The same is largely true of energy use for wastewater treatment.   

Historically, energy has been relatively inexpensive internationally and many wastewater treatment 
facilities were not designed or operated with energy use efficiency in mind (NYSERDA, 2010).  Moreover, the 
gradual progression from simple low-cost treatment processes, to more advanced highly engineered 
processes in order to meet increasingly stringent regulatory criteria, has led to a progressive increase in the 
energy intensity of wastewater treatment over time (Chang et al., 2008).  This progressive intensification of 
energy demands for wastewater treatment has been brought sharply into focus in recent years by dramatic 
increases in the unit cost of energy, including electricity (AEMO, 2016), as well as increasing volatility in energy 
tariffs linked to deregulation and structural changes to energy markets (Escribano et al., 2011).  Increased 
environmental awareness and the relevance of energy use and greenhouse gas emissions has also 
progressively driven the need for energy efficiency and process optimisation in wastewater operations.  In 
combination, these factors have increased the pressure on energy-intensive industries and facilities like 
wastewater treatment plants (WWTPs) to look for ways to minimise operational energy use.  

 

Energy use and efficiency in wastewater treatment 

While energy required for wastewater treatment on a per capita basis is some 10-fold lower than that 
of domestic water heating for example (Kenway et al., 2015), WWTPs as industrial facilities are typically among 
the largest single energy users of municipalities (Krampe, 2013; Müller et al., 2010), thereby presenting 
important opportunities for energy optimisation and efficiency gains.  WWTPs can represent one seventh 
(1/7th) of the total energy consumption of municipal public structures and facilities, with energy also constituting 
some 20–40% of total WWTP operating costs (US EPA, 2013).   

Inefficiencies in WWTPs are due to various factors, including: use of inefficient equipment, usually 
from the over design of pumps and processes; incorrect operational practices and/or lack of proper controls; 
and a lack of operator understanding of energy conservation measures (Chang et al., 2008; Ragazzo et al., 
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2015).  Also, the recent adoption of energy-hungry ‘state-of-the-art’ technologies such as membrane 
bioreactors and UV disinfection has become increasingly common, in some cases without proper justification 
for such advanced technologies (Ragazzo et al., 2015).  Practically all WWTPs present opportunities for energy 
savings, including—or perhaps especially—new plants (Müller et al., 2010).  To improve energy efficiency in 
the water sector, energy benchmarking has been applied internationally with the broad goal of helping the 
sector identify and adopt best practice efficiency in the pursuit of better industry performance (Cabrera et al., 
2011).   

 

ISO 50001: Energy Management Systems 

Energy benchmarking in the water sector is a sub-set of the broader benchmarking approach and falls 
under the International Standard ISO 50001:2011 Energy Management Systems (ISO, 2011).  Energy 
benchmarking enables different water utilities to equate their operational energy performance with other water 
utilities and comparatively measure their performance, as well as identifying the source of differences for 
targeted implementation of energy efficiency improvement measures (GHD, 2014b; Krampe & Trautvetter, 
2012).  Once best practices are identified, the water industry then sets the best practice values (so-called 
Target Values) for ongoing improvement and efficiency gains (de Haas et al., 2015). 

One of the key activities in energy benchmarking involves the undertaking of an initial energy review 
to establish an energy performance baseline.  This baseline is then used for ongoing performance monitoring 
and setting improvement targets in relation to future energy performance.  Adjustments to this baseline may 
be made if the performance indicators no longer reflect the industry energy consumption (ISO, 2011).  Under 
ISO 50001:2011, the industry is required to develop, record and maintain an energy review, and document the 
process.  Energy consumption should be analysed based on industry data, with identification of the areas 
where energy use is significant throughout the facility to determine current energy performance.   

While ISO 50001 provides the overall framework for energy auditing and identifying areas for 
optimisation, it does not prescribe the energy performance indicators (benchmarks) nor does it prescribe or 
recommend a standard/best practice approach to develop them.  This leaves the water industry to determine 
the best approach for energy benchmarking and the setting of energy performance benchmarks.  The first 
European energy benchmarking manual was developed in Switzerland in the mid-1990s and since then, 
considerable effort has gone into developing and refining these methods, with European methodology now 
considered world’s best practice (Crawford, 2010) and today embraced and replicated in many other countries, 
including Australia. 

 

Australian energy benchmarking in wastewater treatment 

In 2006, the Commonwealth Government of Australia established an Energy Efficiency Opportunities 
(EEO) program (enacted by the EEO Act 2006) to encourage industry and commercial sectors to pursue cost-
effective energy efficiency initiatives.  An essential function of the EEO program was the undertaking of a 
rigorous/comprehensive assessment of energy use, the purpose being to identify cost-effective energy savings 
with a payback period of up to four years.  Participation in the program was compulsory for businesses that 
individually, or as part of a corporate group, had energy use >0.5 PJ/y.  As at June 2013, EEO member 
corporations accounted for 56% of Australia’s total energy use (Australian Government, 2006, 2010); however, 
the EEO program was closed in 2014 with the repeal of the EEO Act.  

Following on from its first EEO report and energy baseline in 2009 (SA Water, 2009), the South 
Australian water utility SA Water undertook the first ever Australian energy benchmarking assessment of its 
wastewater treatment operations in 2012, with 24 WWTPs subject to detailed assessments (Krampe & 
Trautvetter, 2012).  The study followed the German methodology (Müller et al., 1999), incorporating benchmark 
optimisation values from Baumann and Roth (2008) and Haberkern et al. (2008) to enable a wider variety of 
treatment processes and WWTP sizes to be captured (Krampe & Trautvetter, 2012).  The methodology 
followed the same WWTP size classifications as determined in German benchmarking methodology for 
consistency with the benchmarks of Baumann and Roth (2008) and Haberkern et al. (2008). 

This pioneering benchmarking work from South Australia recognised that the European benchmarks 
may not be fully applicable to Australian contexts; e.g., due to higher nitrogen loads in Australian wastewater 
(Krampe, 2013).  The energy requirements of nutrient-removing WWTPs is strongly dependent on the nitrogen-
to-organic carbon (N:COD) ratio in the raw wastewater, due to the oxygen consumption for nitrification and 
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also because of the need for reduced COD removal by primary sedimentation in the case of a high N:COD 
ratio (Nowak, 2003).  Nevertheless, the effluent targets between Europe and Australia were considered to be 
comparable (Krampe, 2013).  Despite some issues with data coverage quality, this initial energy benchmarking 
work was extremely useful and helped to identify significant potential for energy efficiency optimisation, whilst 
also identifying data gaps for future such assessments (Krampe, 2013). 

Following South Australia’s lead, in 2012 the Australian water industry peak body (the Water Services 
Association of Australia; WSAA) conducted an energy survey with the participation of 16 water utilities.  This 
first national energy survey captured 134 WWTPs, recording a total energy consumption of approx. 16 GWh/y 
(Krampe, 2012).  Based on this initial survey, the first national Australian energy benchmarking assessment 
commenced in 2013.  The study involved the collection of data from 17 water utilities spread across seven 
states and territories, including in total 142 WWTPs (GHD, 2014a, 2014b).  The study applied the same 
approach of SA Water (Krampe and Trautvetter, 2012; Krampe, 2013) and based its evaluation on 2013–2014 
financial year data.   

Results showed that 10% of assessed WWTPs had energy efficiency performance close to the best 
practice Target Values (GHD, 2014a) (as specified by Baumann and Roth (2008) and Haberkern et al. (2008)) 
– a good outcome given that Target Values represent 10th percentile energy performance in category.  When 
referring to Guide Value performance (50th percentile), Australian WWTPs performed significantly below 
expectations, with only 16% approaching these values (GHD, 2014a, 2014b) and highlighting the substantial 
future scope for energy efficiency improvements.  Usefully, this initial study identified the minimum 
requirements for data collection, serving as a useful guide to water utilities in future energy optimisation efforts.  
It also provided a good baseline for understanding and improving future energy benchmarking and 
performance assessments by providing a reference manual for water utilities on to how identify WWTPs that 
represent best opportunity for energy efficiency improvements. 

In 2017 a second study was commissioned by WSAA, this time evaluating 245 WWTPs across 
Australia and New Zealand.  The results showed that although there had been  improvement in data recording 
and collection and overall WWTPs showed improvement in energy efficiency (when compared to 2014 data), 
there was still much more to be done to improve energy performance and refine energy benchmarks (de Haas 
et al., 2018; GHD, 2017). 

 

Overview of national WWTP energy performance assessments 
The 2016–17 survey by WSAA gathered information relevant to energy benchmarking analysis, 

including: general information (name, location and design capacity of WWTP expressed as megalitres (ML)/d 
and kg BOD5/d, overall process description, pumping head); secondary effluent quality (chemical oxygen 
demand (COD), ammonia- and oxidised-nitrogen – all in mg/L); influent loads (flow in ML/d, COD in kg/d, total 
nitrogen (TN) load in kg/d); biogas production and on site power generation (biogas volume produced in ML/y 
or m3/y, amount of biogas wasted/flared in ML/y, electricity generated from biogas in MWh/y, analysis data of 
the heat value of biogas or the % methane content); energy consumption of the plant (total electricity 
consumed, total external fuel source consumed, electricity consumption for the aeration of the secondary 
treatment stage).  These data were assessed and a results summary of energy performance for the Australian 
state and territories, considering WWTP size and operational configuration, is presented below.  

Some 87% of the Australian population is connected to sewage systems (UNSTAT, 2011), or approx. 
21.8 million people.  There are 74 Australian urban water utilities with a combined 673 municipal WWTPs 
(Bureau of Meteorology, 2018) collecting a combined wastewater volume of 1,896,641 ML during the 2015–
16 period (ABS, 2017).  The WSAA benchmarking study captured data from 245 WWTPs, 243 of which were 
Australian and the remainder from New Zealand.  This chapter deals only with the performance of Australian 
WWTPs.  These 243 WWTPs have a total annual operational capacity of 24,659,180 PECOD

1, with a total treated 
wastewater volume of 1,528,210 ML, or some 4,185 ML/d.  Though representing some 36% of all WWTPs 

                                                                 
1 Number of connected population equivalents is expressed as the sum of population pollution load in domestic wastewater (served 

inhabitants) and the measured pollution (organic) load from commercial sources entering a sewage treatment plant).  A standard 

population-specific COD load of 120 g/PE/d was applied. 
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nationally, the 243 Australian WWTPs surveyed include the largest metropolitan plants and so collect and treat 
around 81% of the total national sewage flow (ABS, 2017).   

The assessment of WWTPs was carried out according to predefined WWTPs size classes (SC) and 
the distribution of WWTPs per SC is shown in Figure 1.  Notably, plants in SC 5 (>100,000 population 
equivalents; PE), while representing only 16% of the surveyed WWTPs, are responsible for 81.6% of WSAA 
surveyed wastewater flow treated (1,209,151 ML) or some 63.8% of the total treated wastewater flow 
nationally.  In addition to size class, the WWTPs were assessed according to the plant’s process configuration 
typology, being plant Types 1 to 5 (GHD, 2014b, 2017).  When assessed according to WWTP process 
configuration or type, 133 of the total 243 WWTPs (≈55% of total) were classified as Type 3 extended aeration 
activated sludge systems.  The next most common process types were Type 5 aerated lagoons with 52 
WWTPs (21.3% of total), Type 2 activated sludge systems with separate sludge stabilization but without on-
site biogas co-generation with 24 WWTPs (9.8% of total), Type 1 activated sludge systems with separate 
sludge stabilization and on-site biogas co-generation with 22 WWTPs (9% of total) and Type 4 trickling filters 
with 13 WWTPs (5.3% of total surveyed plants). 

 

 

Figure 1: Breakdown of WWTPs surveyed in 2016 benchmarking analysis according to size classification. 

Wastewater treatment performance results 

Table 1 summarizes the 2016 national WWTP load and performance characteristics per Australian 
state and territory, including population equivalent-normalised wastewater volumes, pollutant loads, electricity 
use performance, and related carbon dioxide-equivalent (CO2-e) emissions.  Here, it should be noted that 
industrial WWTPs (pulp, pharmaceutical and leather industries) are also included, each of which contain a 
high proportion of hard-to-degrade COD in the wastewater.   

Type 3 extended aeration activated sludge systems were shown to have the lowest effluent COD 
discharge values on average, achieving COD removal ratios of 66.1–99.2% (median 95.5%), followed by Type 
1 activated sludge systems with COD removals of 88.8–97.7% (median 93.85%), Type 2 activated sludge 
systems with COD removals of 90–98.2% (median 93.37%), and Type 5 aerated lagoons with the poorest 
COD removals at 46.9–93% (median 87.2%).  

In the case of total nitrogen, the Type 3 activated sludge systems achieved the best results with a 
median effluent value of 5.3 mg/l (range 1–30.16 mg/l) followed by Type 2 activated sludge systems with a 
median effluent value of 8.15 mg/l (range 2.39–40.69 mg/l).  Type 5 aerated lagoon WWTPs [T5] achieved 
median effluent TN levels of 11.72 mg/l (range 2.10–76.25 mg/l), followed by Type 1 activated sludge systems 
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with median effluent TN of 16.02 mg/l (range 3.70–57.62 mg/l) and lastly Type 4 trickling filters which achieved 
a median effluent TN of 30.04 mg/l (range 3.77–44.12 mg/l).  

Regarding energy use efficiency, trickling filters displayed the best energy performance with a median 
of 30.7 kWh/(PE/y) and associated carbon emissions 27.9 kg CO2-e/(PE/y), with Type 3 extended aeration 
activated sludge systems having the highest median specific electricity use of 62.5 kWh/(PE/y) and associated 
carbon emissions intensity of 56.8 kg CO2-e/(PE/y). 
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Table 1: Summary of 2016 national performance data for all 243 Australian WWTPs surveyed. 

 ACT1 QLD NSW SA TAS VIC WA Australia 

WWTPs surveyed 2 61 48 12 10 89 21 243 

Wastewater flow (million m³/y) 33.12 261.9 583.0 54.88 23.89 427.2 144.2 1,528 

Operational capacity (million PE) 0.49 4.36 7.75 0.93 0.45 8.37 2.31 24.66 

Specific wastewater flow [m³/(PE/y)] 66.9 67.29 74.3 76.61 55.29 73.08 86.77 73.082 

Influent COD (mg/l) 655.2 726.3 572.6 752.6 771.3 648.4 800.4 726.32 

Effluent COD (mg/l) 12.16 35.55 156.7 67.93 - 40.99 29.11 38.272 

COD removed (%) 98.14 94.73 91.8 89.42 - 95.06 95.23 94.892 

Influent TN (mg/l) 81.97 62.27 58.68 87.76 58.63 64.23 68.43 64.232 

Effluent TN (mg/l) 14.95 3.78 7.38 8.82 28.84 7.05 14.10 8.822 

TN removed (%) 78.32 93.39 86.58 84.93 51.95 88.40 74.45 84.932 

Specific energy consumption 
[kWh/(PE/y)] 

317.13 59.06 56.10 48.80 41.80 51.91 57.36 56.102 

Flow-specific energy consumption 
(kWh/m³) 

4.763 0.84 0.78 0.75 0.68 0.78 0.83 0.782 

Nutrient-specific energy consumption 
(kWh/kg TN removed) 

137.83 16.51 16.80 11.64 27.19 15.94 18.08 16.802 

Carbon dioxide equivalent emissions 
[kg CO2-e/(PE/y)]4 

298.53 54.34 52.73 27.77 7.52 60.22 43.59 51.052 

1 Australian States and Territories: ACT – Australian Capital Territory; QLD – Queensland; NSW – New South Wales; SA – South Australia; TAS – Tasmania; VIC – 
Victoria; WA – Western Australia; 2 Average data; 3 Data considered non-representative of true performance due to very small sample size (n = 2);  4 State-based grid 
electricity emission factors (kg CO2-e/kWh; full fuel cycle scope 2 + 3) sourced from Australian Government (2018). 

 



WWTP energy efficiency and carbon emissions trends 
Referring to 2016 national WWTP performance data (Table 1), Australian national average specific 

energy performance was 56.1 kWh/(PE/y) and per capita equivalent greenhouse gas emissions some 51.1 kg 
CO2-e/(PE/y).  Total WWTP annual energy use in both 2014 and 2016 survey years and total associated 
carbon emissions is shown in Figure 2.  The energy use patterns for wastewater treatment operations largely 
reflect state population sizes, with the performance of NSW disproportionately lower than its relative population 
size due to several large capacity primary-only treatment WWTPs (combined PE of these primary-only plants 
is some 4 million).  Overall, total WWTP energy use and carbon emissions were relatively consistent between 
2014 and 2016 survey years, with the exception of South Australia which achieved an approx. 50% reduction 
in both total annual energy use and carbon emissions due to significant investment in WWTP process 
efficiencies and optimisation.   

Figure 3 gives the per capita equivalent specific energy use and associated carbon emissions intensity 
of WWTPs in both 2014 and 2016 survey years according to state.  At the national average level, specific 
energy use efficiency of these plants improved overall by some 13% from 54.7 kWh/(PE/y) in 2014 to 47.5 
kWh/(PE/y) in 2016.  At the state level, most states performed similarly to the national average values.  Notable 
exceptions were Tasmania which performed best in terms of both specific energy consumption (41.8 
kWh/(PE/y)) and per capita equivalent greenhouse gas emissions (7.52 kg CO2-e/(PE/y)), with the very low 
carbon emissions intensity there due to the predominance of hydroelectricity in this state.  South Australia was 
the next best performer for both specific energy consumption (44.8 kWh/(PE/y)) and per capita equivalent 
greenhouse gas emissions (27.8 kg CO2-e/(PE/y)).  Large differences in carbon emissions intensity 
performance between states are a reflection of differing WWTP specific energy performance combined with 
variable state-based emission factors for grid electricity.   

 

 

Figure 2: Australian WWTP total annual electricity use (GWh; histogram bars) and carbon dioxide equivalent 
emissions (kt CO2-e; ♦, ●) per state for survey years 2014 and 2016 respectively.  Data derived only from 
those 121 WWTPs participating in both survey years.  
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Figure 3: Australian WWTP specific electricity use (kWh/PE/y; histogram bars) and carbon dioxide equivalent 
emissions (CO2-e/PE/y; ♦, ●) per state for survey years 2014 and 2016 respectively.  Data derived only from 
those 121 WWTPs participating in both survey years.  

 

Future outlook for energy efficiency and low carbon wastewater treatment 
The Australian water industry has invested considerable resources toward energy efficiency initiatives 

in recent years and many water authorities now recognise the important role of optimising wastewater 
treatment operations in achieving their corporate energy and carbon neutrality objectives.  This chapter has 
presented a summary of WWTP energy benchmarking work to date, with WWTP energy use and carbon 
emissions intensity performance data given for wastewater treatment operations covering the majority of the 
Australian population.  National median per capita equivalent specific energy consumption was some 56 
kWh/(PE/y), with an associated average per capita equivalent carbon emission intensity of 51 kg CO2-e/(PE/y).  
While wastewater treatment operations are a dominant source of greenhouse gas emissions for the water 
industry, greenhouse gas emissions from WWTPs are a relatively minor component of the total national CO2-
e emissions inventory, contributing <1% to the total inventory.  

The undertaking of energy benchmarking and subsequent WWTP energy efficiency optimisations 
have delivered measurable gains for some state water authorities in recent years; however, considerable 
scope exists to further optimise WWTP processes for future energy and carbon reductions.  Participation in 
national energy benchmarking projects is currently voluntary, but international experience has demonstrated 
the importance of comprehensive industry participation in benchmarking exercises to develop robust 
performance metrics and ensure industry gets the most from benchmarking efforts.  Regular and consistent 
updates of energy benchmarks are also required to ensure that they reflect current industry best practice, 
technological advancements and regulated environmental performance criteria.   
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Appendix C.  Research output 6: Understanding the role of wastewater feeding strategy (anaerobic 
or split anaerobic–aerobic) on AGS development and functional performance 
 

This research output has been published in the following: 

 

Citation: Thwaites, B.J., Reeve, P., Dinesh, N., Short, M.D., van den Akker, B. (2017) Comparison of an 
anaerobic feed and split anaerobic–aerobic feed on granular sludge development, performance and ecology. 
Chemosphere 172: 408–417; https://doi.org/10.1016/j.chemosphere.2016.12.133 

 

  

https://doi.org/10.1016/j.chemosphere.2016.12.133
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Title: Comparison of an anaerobic feed and split anaerobic–aerobic feed on granular sludge development, 
performance and ecology 

 

Authors: Benjamin J. Thwaites, Petra Reeve, Nirmala Dinesh, Michael D. Short, Ben van den Akker 

 

Abstract: The retrofitting of existing wastewater sequencing batch reactors (SBRs) to select for rapid-
settling aerobic granular sludge (AGS) over floc-based conventional activated sludge (CAS), could be a 
viable option to decrease reactor cycle time and increase hydraulic capacity. Successful CAS-to-AGS 
conversion has previously been shown to be highly dependent on having a dedicated anaerobic feed, which 
presents additional engineering challenges when retrofitting SBRs. In this study we compared the 
performance of a split anaerobic–aerobic (An–Aer) feed with that of a traditional dedicated anaerobic feed 
regarding AGS formation and stability, nitrogen removal performance and microbial ecology. Using pilot 
trials, we showed that AGS could be established and maintained when using a split An–Aer feed at low 
organic loading rates analogous to that of a parallel full-scale conventional SBR. Additionally, we showed 
that AGS start-up time and nitrogen removal performance were comparable under a split An–Aer feed and 
dedicated anaerobic feed. Microbial ecology characterisations based on whole-of-community 16S rRNA 
profiles and targeted analysis of functional genes specific for nitrifying and denitrifying microorganisms, 
showed that the two different feed strategies had only subtle impacts on both the overall community 
composition and functional ecology. A much greater divergence in microbial ecology was seen when 
comparing AGS with CAS. Data presented here will be of value to those planning to retrofit existing CAS-
based SBRs to operate with AGS and demonstrates the viability of using a more cost-effective split An–Aer 
feed configuration over a dedicated anaerobic feed.  

 

Keywords: Aerobic granular sludge, anaerobic feed, aerobic feed, SBR, qPCR, microbial community 
ecology, nutrient removal.  

 

Highlights 

• Two feeding strategies were compared for aerobic granular sludge SBR operation 

• Performance of split anaerobic–aerobic and dedicated anaerobic feeding was compared 

• Start-up, performance and microbial ecology were similar under both feed strategies 

• Aerobic granular sludge ecology was different to conventional activated sludge 

• Split anaerobic–aerobic feeding is a viable, cost-effective SBR retrofit solution 

 

1. Introduction  
Aerobic granular sludge (AGS) is an emerging technology for secondary-level wastewater treatment which 
utilises rapid-settling microbial granules in place of floc-based conventional activated sludge (CAS). 
Selection for the development of AGS is commonly achieved using sequencing batch reactors (SBRs). Two 
key conditions are typically required for AGS establishment: an anaerobic feed; and a short settling time 
(<30 minutes) which ensures effective washout of fast-growing, floc-forming organisms (Morgenroth et al., 
1997). The anaerobic feed selects for microorganisms such as polyphosphate-accumulating organisms 
(PAOs) and glycogen-accumulating organisms (GAOs) which store available organic carbon and, therefore, 
gain a competitive advantage over floc-forming organisms and filamentous bacteria (Bassin et al., 2012, 
Beun et al., 1999, Liu and Liu, 2006). One of the main advantages of AGS technology is the rapid settling 
time which results in shortened settling times in SBRs. The cycle saving can be utilised to increase the 
hydraulic capacity of an existing WWTP or reduce the geographical footprint of new SBRs. 

The decreased settling time and denser microbial structure increases the concentration of biomass within the 
reactor, this provides greater nutrient removal capacity and potential to tolerate increased organic loading 
and resilience to shock loading events (Long et al., 2015). 
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The conversion of slow-settling flocs into rapid-settling granules was previously shown to be highly 
dependent on a long anaerobic feed, as opposed to an aerobic feed which is commonly employed in the 
operation of most existing secondary treatment SBRs (Beun et al., 1999, de Kreuk et al., 2005a). For newly 
built granular sludge SBRs, the anaerobic feed can be coupled with the decant phase (Pronk et al., 2015b, 
de Kreuk, 2006). Here the wastewater is fed in plug flow from the bottom of the reactor through the settled 
biomass bed, allowing extended anaerobic contact while the treated effluent above is simultaneously 
decanted from the reactor surface (Pronk et al., 2015b). Shorter cycle times are consequently achieved 
when coupling the anaerobic feed and decant phases. When retrofitting existing SBRs to operate with AGS, 
the use of a simultaneous anaerobic feed and decant presents engineering challenges and can be 
expensive to retrofit, as it requires changes to the inlet design and decant weir to ensure plug flow 
conditions. For existing SBRs that cannot be reconfigured to operate under simultaneous feed and decant 
conditions, the use of a separate dedicated anaerobic feed at the beginning of the cycle is in principle the 
most feasible approach to achieve AGS. However, this approach provides no net reduction in total cycle 
time, as the savings gained by the shorter settling phase are effectively offset by the addition of a dedicated 
anaerobic feed step. Alternatively, the use of a split anaerobic–aerobic (An–Aer) feed is more easily 
achieved within existing SBR configurations and would still yield net cycle time savings; however, the impact 
of this feed strategy on AGS formation and stability is unclear. 

The proposed use of a split An–Aer feed to achieve AGS may be especially suited to wastewater treatment 
plants (WWTPs) with lower organic loading rates, wherein the need for a long anaerobic feed step may not 
be as critical as that needed for plants with high organic/nutrient loads. An example of such a plant is the 
Port Pirie WWTP in regional South Australia. Here the SBRs are hydraulically overloaded due to significant 
groundwater infiltration into an ageing sewer network, such that the plant operates under relatively low 
organic loads. Given the hydraulic overloading, the Port Pirie SBRs are currently in need of a hydraulic 
capacity upgrade, something that may alternatively be achieved through AGS operation to shorten overall 
cycle times. Due to existing infrastructure limitations, the use of a simultaneous anaerobic feed–decant is 
difficult to achieve and was considered impracticable. Therefore, it was postulated that the use of a split An–
Aer feed to condense the anaerobic feed duration, may be sufficient to reduce the overall cycling time and 
therefore increase the hydraulic capacity, while still enabling effective AGS establishment and treatment 
process performance (Figure 1). Accordingly, this study sought to compare the impact of a split An–Aer feed 
strategy on the ability to establish and maintain mature AGS where there may be limitations in organic loads. 
Pilot trials were undertaken to compare AGS start-up and performance when employing a dedicated 
anaerobic feed versus the use of split An–Aer feed under lower organic loads comparable to Port Pirie's full-
scale SBR. The impacts of these feeding strategies on SBR performance in terms of nitrogen removal and 
microbial ecology were also investigated. 

 

2. Methods  
2.1 Granular sludge pilot details 

A pilot SBR facility was constructed and seeded with conventional activated sludge (CAS) floc (Figure 2(A)). 
Pilot trials were operated at the Bolivar high salinity WWTP, which has similar sewage characteristics to the 
Port Pirie WWTP, with elevated salinity in the range of 5–7 g/L total dissolved solids. The pilot AGS SBR 
facility used here was previously described in detail by van den Akker et al. (2015). In brief, cycle times were 
controlled using a programmable logic controller (PLC, Figure 2(B)) which mimicked the conditions of the 
conventional SBR and those needed for AGS development. To investigate the importance of the anaerobic 
feed, a comparison between a full anaerobic feed (Trial A) and split An–Aer feed (Trial B) was undertaken. 
For Trial B, it was estimated that 10–20% of the settled biomass bed was exposed to the anaerobic feast 
conditions (sewage) during the plug feed phase in each cycle, compared to 100% for Trial A. The total 
duration of aeration in both Trials was 120 minutes and for Trial B, a portion of the aeration phase was 
coupled with the feed phase (Figure 1). Settling times for Trials A and B were independently adjusted 
(typically between 5–20 minutes) in order to retain biomass and allow washout of poor settling biomass, and 
therefore average settling times were 8 and 15 minutes respectively. Trials A and B were conducted 
consecutively, each having slightly different organic (chemical oxygen demand; COD) loadings at 1.15 and 
0.76 kg COD/m3/d respectively. These reflect typical organic loadings at WWTPs and also the loading 
experienced at Port Pirie WWTP (Table 1). Organic loading rates in the pilot reactors were varied by 
changing SBR volumetric exchange ratio.  
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Figure 1: Cycling times for Trial A (anaerobic feed), Trial B (anaerobic–aerobic feed) and full-scale Adelaide 
metropolitan SBR WWTP. 

 

Table 1: Typical SBR operating organic load and cycle times (minutes) 

 COD loading 
(kg/m3/day) 

Anaerobic 
feed 

(min) 

Aerobic 
feed 
(min) 

Aeration 

(min) 

Settling 

(min) 
Decant 
(min) 

Total cycle 
time (min) 

Full-scale CAS 
SBR (Bolivar 
WWTP) 

0.80 0 108 54 54 54 270 

Trial A: anaerobic 
feed 1.15 60 0 120 8 2 190 

Trial B: split An–
Aer feed 0.76 20 40 80 15 10 165 

 

 

Figure 2: (A) both AGS pilot plants located within a container alongside the full-scale high salinity SBR 
WWTP, (B) schematic of the SBR pilot plants operated for AGS 

 

2.2 Monitoring and analysis 
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Feed)

Trial A (An Feed)
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SBR performance for each trial was monitored over 95 days by measuring temporal changes in 
concentrations of NH4

+-N, NO2
−-N, NO3

−-N, PO4
−-P and COD within the feed sewage and effluent using 

commercial HACH® test kits (10031, 10019, 10020, 8048 and 8000 respectively). Furthermore, mixed liquor 
was also analysed for suspended solids (MLSS) and sludge settleability using a 30-minute sludge volume 
index (SVI30) following standard methods (APHA, 1998). The pilot SBRs were operated alongside a CAS full-
scale SBR for comparison (Table 1). Morphological biomass changes were observed via light microscopy 
(Nikon (SMZ1000) and images were captured using Nikon Digital Sight (DS-U2, Japan) and NIS-Elements D 
3.0 (Laboratory Imaging s.r.o.). 

 

2.3 Real-time polymerase chain reaction (qPCR) 

Biomass samples were collected from the full-scale CAS SBR and during each of the granular sludge Trials 
and stored at −80°C for molecular analyses. Duplicate biomass samples were washed three times in 
phosphate buffer saline (0.2 M) and total genomic DNA was extracted (≈0.25 g biomass) using PowerLyzer® 
PowerSoil® DNA Isolation Kit (MOBIO Laboratories, Inc., Carlsbad, CA) according to manufacturer’s 
protocols. DNA concentration was measured using a Nanodrop 2000C spectrophotometer (Thermo 
Scientific, Delaware, USA). The abundance of ammonia-oxidsing archaea/bacteria (AOA/AOB), nitrite-
oxidsing bacteria (NOB) and denitrifying bacteria were quantified using qPCR targeting 16S rRNA/functional 
gene primer sets as per Reeve et al. (2016). Analysis was carried out in duplicate using a Rotor-Gene 3000 
(Corbett Research, Sydney, Australia). Each 25 μL reaction contained 4 mM MgCl2 (Invitrogen, Carlsbad, 
CA, USA), 5 μM of oligonucleotide primers (Geneworks, Adelaide, Australia), 0.2 mM dNTPs (Promega, 
Madison, WI, USA), 1× GoTaq PCR buffer (Invitrogen), 1 U of GoTaq (Invitrogen) and 2 μM SYTO9 
(Invitrogen). Thermal cycling conditions involved a primary denaturation at 95°C for 6 min, followed by 55 
cycles at 95°C for 20 seconds, 52–66°C for 30 seconds and 72°C for 30 seconds.  

 

2.4 Whole-of-community 16S rRNA fingerprinting 

Next-generation sequencing (NGS) was performed on the full-scale CAS floc and mature AGS samples 
collected from Trial A and B on days 90 and 95 respectively. DNA was extracted using 16S rRNA gene 
specific primers targeting the region 341F to 806R, using the same extraction method described above. DNA 
extracts were sent to the Australian Genomic Research Facility (Brisbane, Australia) and next-generation 
DNA sequencing was performed using a MiSeq sequencer. Sequences were annotated and processed as 
described in detail by Sawade et al. (2016).   

 

2.5 Data analyses 

NGS operational taxonomic unit (OTU) data was presented using Krona interactive visualization program 
offered by MG-RAST (Ondov et al., 2011). Similarity of the NGS OTU data measured from the AGS and 
CAS samples was tested via Bray–Curtis similarity analyses using PRIMER 6 (Primer-E, Plymouth, UK) at 
the phylum and class taxonomic ranks. 

 

2.6 Statistical Analysis 

Differences in AGS nutrient removal performance were examined by t-test. Statistical significance was 
accepted at the p<0.05 level. All analyses were achieved using Graphpag PRISM 6 (Version 6.07, Graphpad 
software, California, USA) 

 

Results and Discussion  

3.1 Pilot start-up 

Both pilot Trials were initially seeded with 2–3 g/L MLSS taken from the neighbouring aerobically-fed full-
scale SBR at the Bolivar high salinity WWTP. Figure 3 compares the SVI30 performance of both AGS pilot 
studies and the full-scale SBR in terms of percent change in SVI30 from day zero. This relative comparison 
approach was adopted to better enable direct comparisons in settling performance given the starting SVI30 
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values varied between all systems. Both Trials A and B showed significant improvement in biomass 
settleability within 26 and 44 days, whereby respective SVI30 values reached 37.5 and 76.4 mL/g MLSS. This 
observation corresponded with increased biomass concentration in both pilot systems due to the 
development of AGS, with MLSS increasing from around 3 g/L initially, to around 5–7 g MLSS/L during the 
latter stages of both Trials. In contrast to both pilot AGS Trials, SVI30 of mixed liquor from the full-scale SBR 
underwent little change during the same period (Figure 3). AGS development for both Trials was confirmed 
by analysis of the SVI 5 min/30 min settling performance which showed values of 1.1 for Trial A and 1.2 for 
Trial B, confirming granular sludge was successfully achieved (Liu et al. (2010). These results highlight that 
AGS can be successfully developed and maintained despite differences in organic loading conditions and 
the use of a split An–Aer feed. 

 

 

Figure 3: Pilot plant biomass settleability (SVI30) dynamics relative to day zero and mixed liquor suspended 
solids (MLSS) concentration over time. For comparison, the full-scale SBR SVI30 dynamics are provided in 
orange, again relative to day zero.  

 

3.2 Biomass morphology 

MLSS from both Trials and the neighbouring full-scale SBR were viewed using light microscopy to assess 
morphological changes in reactor biomass (Figure 4). As expected, CAS taken from the full-scale SBR plant 
appeared as loose, floc-like structures with no clear aggregation (Figure 4A). Granular structures were 
clearly identified in both samples after 42 days of operation, corresponding to the decrease in SVI30. 
Filaments were identified protruding from the loose structures. Granules from Trial A (Figure 4B) were 
irregular in shape, had minimal filamentous protrusions, darker centres and a transparent layer which 
encapsulated the granules. Granules in Trial B (Figure 4C) were noticeably smoother and more regular in 
structure, with fewer finger-like projections from the surface and similar to Trial A had a darker core 
indicating a dense structure. The smoother appearance of AGS morphology from Trial B may be attributed to 
differences in AGS loading as well as sludge age, as biomass wasting was performed only during Trial B to 
maintain younger AGS. The irregular granule shape for Trial A may, therefore, be a reflection of an older 
AGS biomass. 
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Figure 4: Morphological changes in biomass morphology showing: (A) seeded MLSS floc viewed on day 1 of 
start-up with a sludge age of 25 days; (B) AGS from Trial A which used a dedicated anaerobic feed taken a 
sludge age of 28 days; and (C) AGS from Trial B which used a split An–Aer feed taken at a sludge age of 22 
days. All images taken at 10× magnification. 

 

Interestingly, our observations are in contrast to those of McSwain et al. (2004) who identified that granules 
fed with a dedicated anaerobic feed with no biomass mixing were more regular in shape, denser and had 
fewer filamentous protrusions, while granules fed in split An-Aer fashion were less dense and more irregular 
in shape and had relatively more filamentous protrusions. Whilst the observations of McSwain and 
colleagues were in apparent contradiction to observations of granular morphology during our study, the 
differences in loading, operation and substrate may help explain these differences. For example, the reactors 
of McSwain et al. (2004) were fed with a synthetic substrate supply (glucose + peptone) at 2.4 kg COD/m3/d 
which was some two- to three-fold higher than the organic loading rate of Trials A and B (1.15 and 0.76 kg 
COD/m3/d) and the full-scale SBR (0.8 kg COD/m3/d) respectively. The higher organic loading rate of 
McSwain et al. (2004) would be expected to facilitate filamentous bacteria growth over granule-forming 
organisms, resulting in the more ‘fluffy’ appearance the authors observed.  

 

The irregular, finger-like protrusions extending from the granules seen during Trial A may have been a result 
of the higher organic loading that can lead to the development of steep substrate and oxygen diffusion 
limitation gradients, which has been shown to induce filamentous outgrowth and a 'fluffy' exterior. This was 
identified in modelling work by Picioreanu et al. (1998) who found that when the ratio of biomass growth rate 
versus diffusive transport is high, sharp gradients existed that resulted in “finger-like” or “mushroom” biofilm 
outgrowths. Experimental work conducted later by Mosquera-Corral et al. (2005) made similar observations, 
where sharp concentration gradients and diffusion limitations, induced by a decrease in dissolved oxygen 
concentrations, had resulted in the development of irregular, external floc-like structures on AGS. The more 
regular appearance and ‘smooth’ surface of granules such as that observed in Trial B here is said to develop 
when the ratio of biomass growth versus diffusive transport is low (i.e. flatter oxygen or substrate gradients) 
(Picioreanu et al., 1998, Pronk et al., 2015a). For highly loaded AGS systems, this requires the use of a slow 
anaerobic feed to ensure even biomass production throughout the granule, which is important for granule 
stability (Pronk et al., 2015a). For our study, it was likely that the decrease in the organic load during Trial B 
had similar affect in reducing the ratio of biomass growth rate versus substrate transport ratio, and hence a 
long anaerobic feed was less crucial. 

 

3.3 AGS performance  

SBR performance data for the pilot Trials are summarised in Table 2. Whilst there was a clear change in the 
morphology of the mixed liquor in both AGS Trials, the nitrification performance of the pilot SBRs remained 
quite stable for the entire duration, with ammonium removal typically >95%. Total nitrogen removal was 
initially more variable when compared to the CAS, which was attributed to periods of over aeration within the 
pilot AGS systems, which resulted in reduced denitrification performance and NO3

−-N accumulation.  Total 
nitrogen removal did however improve during both Trials A and B from 61% and 41% after the first 40–45 
days respectively, to 97% and 90% as the AGS matured (Figure 5). This improvement was most likely due to 
the development of anoxic denitrifying cores within the granules which facilitated simultaneous nitrification–
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denitrification (de Kreuk et al., 2005a). t-test comparing the AGS performance of Trial A and B revealed no 
significant difference in the removal of COD (P = 0.092), TN (P = 0.28) and ammonium (P = 0.157). 

 

Table 2: Pilot granular sludge SBR and full-scale SBR performance data during the 95 day study (data 
shows minimum and maximum performance range for each parameter) 

 Trial A 

(anaerobic feed) 

Trial B 

(anaerobic–aerobic feed) 
Full-scale SBR 
(aerobic feed) 

Organic load (kg COD/m3/d) 1.15 0.76 0.80 

SVI30 37–188 58–131 211–360 

MLSS (g/L) 1.7 – 6.3 2.1 – 6.8  2.5–3.5 
Sludge age (days) 14–34 15–31 21–25 

Aeration DO (mg O2/L) 1.0–3.0 1.0–3.5 1.0–3.0 

 

The dissolved oxygen concentration range was optimised during the study to be between 1.0–3.5 mg/L 
(regulated via PLC control), which also assisted total nitrogen removal performance (Table 2).  

 

Soluble phosphorus (PO4
3−) removal was lower in Trial B than in Trial A (t-test, p = 0.009). PO4

3− Removals 
in Trial A ranged between 5.4 and 49.7 %, and for Trial B 4.3 and 17.3 % mg/L (Figure 5). PO4

3− concertation 
profile taken during the cycle also showed reduce PAO activity in Trial B, as seen by the limited release of 
PO4

3− during the anaerobic feed and subsequent uptake during aeration (Supplementary Information S1). 
Net phosphate removals seen in both Trials were notably reduced than compared to de Kreuk et al. (2005a), 
who reported on average 94% PO4

3− removal efficiency in small laboratory-scale AGS reactors operated 
under comparable DO (1.8 mg O2/L) and organic loadings (1.6 kg COD/m3/d). The lower PO4

3− removal 
performance here is most likely due to the high saline nature of our sewage, as salinity is known to inhibit 
PAOs (Corsino et al., 2016, Welles et al., 2014). For example, Pronk et al. (2013) showed that nitrite (NO2

−) 
levels above 4.0 mg/L in addition to high salinity (>200 mg/L) were inhibitory to PAOs, with evidence that 
salinity levels of 20 g/L in the absence of NO2

− also yielded reduced PAO activity. Similarly, Bassin et al. 
(2011) showed that increased salinity coupled with high NO2

−
 concentrations resulted in a loss of Nitrospira 

and PAOs. The poor biological PO4
3− removal performance observed during Trial B in particular can be 

explained by the lower COD loading rate during this Trial and marked reduction in anaerobic feed duration 
(Table 1). Such conditions would be expected to be unfavourable to PAOs (Pronk et al., 2013, de Kreuk and 
van Loosdrecht, 2004, de Kreuk et al., 2007). 

 



67 

 

 

Figure 5:  Comparative treatment performance data (100−(Ceffluent/Cinfluent)×100) for Trial A and B versus the 
full-scale SBR  over the 95 day period (data shows mean ± 1 S.D. for each nutrient measured). 

 

3.4 Microbial ecology of key nitrogen cycling organisms 

Microbiological diversity of CAS flocs sampled from the full-scale SBR and mature AGS sampled from Trials 
A and B were analysed using qPCR to compare the abundance of key nitrifying and denitrifying 
microorganisms. Notable differences were seen in the abundance of ammonia-oxidsing bacteria (AOB) and 
ammonia-oxidsing archaea (AOA) in particular based on measured target gene copy numbers (Figure 6). 
AOB were 4- and 2-log10 more abundant in the full-scale CAS flocs compared to AGS sampled during Trials 
A and B respectively. In contrast, AOA were markedly more abundant in AGS than CAS flocs by some 5- 
and 7-log10 orders for Trials A and B respectively. The preference of AOA for AGS may be attributed to the 
longer sludge age (AOA are generally slower growing than AOB), as well as the presence of potentially 
steep oxygen and nutrient gradients that are likely to exist throughout the granule depth. These factors have 
been identified as likely environmental drivers for niche differentiation and promotion of AOA over AOB in 
activated sludge-based wastewater treatment systems elsewhere (Short et al., 2013). 
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Figure 6: Microbial populations for AGS Trials A (anaerobic feed) and B (split An–Aer feed) and full-scale 
(aerobic feed) conventional SBR, comparing the abundances of ammonia-oxidising bacteria (AOB), 
ammonia-oxidising archaea (AOA), Nitrobacter and Nitrospira lineages and denitrifying bacteria. Error bars 
represents ± 1 standard deviation of log10-transformed data. 

 

Nitrospira spp. was clearly the dominant NOB over Nitrobacter spp. in both the full-scale CAS and AGS pilot 
SBRs (by some 3–6-log10 orders), with no clear differences in relative Nitrospira and Nitrobacter abundance 
between CAS and AGS configurations (Figure 6). Itoi et al. (2007) showed that in mature biofilms, Nitrospira 
was present only in the surface of the biofilms and not present in deeper layers. As AGS is essentially a 
biofilm without a support media, the presence of Nitrospira in the surface layers may also be expected here; 
although the spatial distribution of NOB in our AGS was not assessed. Furthermore, Nitrospira can out-
compete Nitrobacter at low NO2

− concentrations (Blackburne et al., 2007). While only effluent NO2
− data was 

collected during Trial A (0.9–9.8 mg/L), data from Trial B showed mixed liquor NO2
− concentrations of 1–7 

mg/L and just 0–1.6 mg/L in the effluent. The lower effluent NO2
− concentrations during Trial B may have 

favoured Nitrospira over Nitrobacter as seen in Figure 6; although we acknowledge that bulk measurements 
may not necessarily reflect the NO2

− concentrations that NOB would be exposed to within the granules. 

 

Regarding the abundance ratios of NOB/AOB, these were 1,000–3,000-fold higher for the AGS relative to 
the CAS biomass. This apparent disproportion of the NOB/AOB ratio seen in AGS may also relate to the 
presence of a ‘nitrite loop’ within AGS, wherein denitrifiers supply NOBs with additional NO2

− from the 
reduction of nitrate. This observation is supported by the findings of Winkler et al. (2012) who also reported 
higher NOB/AOB ratios in AGS than floc-based CAS. For denitrifying bacteria, results showed notionally 
higher abundance in AGS relative to CAS biomass (<1-log10). While not strikingly different, higher denitrifier 
abundance in AGS over CAS could possibly relate to the development of an anoxic core within the granule 
(de Kreuk et al., 2005a). 

 

3.5 Community diversity profiling 

Microbial community fingerprinting was conducted on DNA extracted from AGS and CAS flocs using 16S 
rRNA gene-based primers as per Section 2.4. The taxonomic distribution of these reuslts are presented in 
Figure 7 (A-C). An interactive version of Figure 7 is available in the Supplementary Information (S2-S4). 
Bray–Curtis similarity analysis (Supplementary Information S5), showed high levels of similarity between 
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AGS communities from both Trials A and B at the phylum and class taxonomic level, suggesting that the 
different AGS feed strategies and loadings had no measurable impact on microbial ecology at these 
taxonomic levels. A greater divergence in similarity can be seen (Figure S4) when comparing the ecology of 
AGS and CAS samples taken from the neighbouring full-scale SBR (i.e. pilot SBR seed sludge).  
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Figure 7: Taxonomic distribution of the microbial community from the 16S rRNA gene-based community 
sequencing data for: (A) full-scale (aerobic feed) SBR floc; (B) Trial A (full anaerobic feed); (C) Trial B (split 
An–Aer feed). Figure prepared by Krona interactive visualisation program. Interactive versions provided in 
Supplementary Information S1, S2 and S3 respectively. 

 

In all three samples, Bacteria were the predominant domain, with Archaea representing <0.1% of total 
community relative abundance (Figure 7). Within the detected Archaea sequences, phylum 
Thaumarchaeota, which contains all known AOA (Gao et al., 2013), was not detected despite AOA being 
detected by qPCR and outnumbering AOB in both AGS samples (Figure 6). The discrepancy is likely due to 
the changes in primers used for detection for qPCR and NGS (i.e. the quantitative PCR conducted targets 
the archaeal amoA gene, while the NGS targets the 16S rRNA gene). As the qPCR targets a specific gene, 
this gives the abundance of the gene in each sample; NGS conversely only yields relative abundance data in 
whole-of-community terms, such that AOA may be relatively underrepresented among the entire community 
diversity, of which ammonia-oxidisers are only a small constituent. Of the Bacteria, Proteobacteria were the 
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dominant phylum in all three samples (Figure 8), representing 55–73% of the total bacterial community, 
followed by Bacteroidetes (17–26%). When comparing AGS with CAS, Proteobacteria were the key 
divergent class, varying by 10% (Figure 8 and S4). Within Proteobacteria, Alphaproteobacteria, 
Betaproteobacteria and Gammaproteobacteria predominated in all samples, but their relative abundances 
varied. In the CAS floc sample (Figure 8), Alphaproteobacteria accounted for the largest portion of phylum 
Proteobacteria organisms, whereas in the AGS biomass (Trial A and B), Gammaproteobacteria was the 
dominant class, representing 47–50% in the AGS Trials. This enrichment of class Gammaproteobacteria 
microbes in AGS here is consistent with the known functional ecology of AGS, as GAOs are well 
represented within this class (Lemaire et al., 2008, Seviour and Nielsen, 2010). 

 

 

Figure 8: Relative abundance of phylum Proteobacteria organisms in AGS pilot Trials A (anaerobic feed) and 
B (An-Aer feed) versus the full-scale SBR CAS floc.  Data relates to samples taken for Trial A and B on day 
90 and 95 respectively. 

 

Of further interest is the change in Betaproteobacteria abundance between the three samples. Based on 
relative abundance, the Betaproteobacteria fraction of Proteobacteria was higher in Trial A and the CAS floc 
compared to Trial B. Notably, Betaproteobacteria includes the putative PAO Candidatus ‘Accumulibacter 
phosphatis’ which has been shown to be critical for PO4

3− uptake in aerobic granular sludge (Bassin et al., 
2012). The relative abundance of this organism alone changed from 1.3% in Trial A, to <0.1% in Trial B and 
0.2% in the full-scale CAS SBR, complementing the reduced biological PO4

3− removal performance (Figure 
5) and PAO activity (S1) observed during Trial B. Interestingly, Candidatus ‘Accumulibacter phosphatis’ is 
known to be favoured by anaerobic/aerobic cycling conditions in particular, so it seems likely that the 
extended anaerobic feed conditions (Cydzik-Kwiatkowska and Zielińska 2016) of Trial A promoted the 
selective development of this organism over the split An–Aer feed conditions of Trial B which would have 
yielded relatively more anoxic/aerobic conditions during the feed phase. Phosphate removal in Trial A and B 
was also lower than expected for typical AGS systems based on typical removal performance observed in 
similar AGS systems elsewhere (de Kreuk et al., 2005b, de Kreuk et al., 2007, Pronk et al., 2013). This 
observation, together with the observed enrichment of Gammaproteobacteria, suggests that GAOs were 
likely to have dominated over PAOs in our AGS system. Trial B also had increased abundance of 
Nitrospirales (3% of total Bacteria) compared to Trial A and full-scale (0.1 and 1% respectively) which was 
also confirmed by qPCR results (Figure 6). 
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4. Conclusion 
Pilot-scale research here showed that the formation and stability of AGS may not be as dependant on a long 
anaerobic feed as previously published research has indicated. The start-up and performance of AGS when 
using a split An–Aer feed under low organic loads (0.76 kgCOD/m3/d) was comparable to the use of a 
dedicated anaerobic feed under typical higher organic loading (1.15 kgCOD/m3/d). Additionally, we have 
shown that different feed strategies (anaerobic versus split aerobic–anaerobic) and organic load, had a 
relatively minor impact on AGS ecology at a higher order taxonomic levels (phylum and class) and more 
importantly, had little impact on the functional microbial ecology and treatment performance of the AGS 
systems. We also showed that there was a shift in diversity of these organisms between CAS and AGS, 
which was related to the change in biomass structure. In particular NGS data showed that there were 
changes within the Proteobacteria class, which showed reduced abundance in PAOs in Trial B in relation to 
GAOs. From an engineering standpoint, we have shown that a dedicated anaerobic feed is not critical to 
achieve AGS, thus potentially increasing the scope for SBR reactor retrofitting and reducing the associated 
retrofitting costs for transforming CAS SBRs to AGS SBRs for shorter operating cycles and increased 
hydraulic capacity of existing plants. 

5. Acknowledgements   

The authors would like to acknowledge the South Australian Water Corporation for funding this research. We 
are also thankful to the Berri Water Engineering Technologies (WET) who constructed the pilot plants. We 
would also like to thank the Allwater staff at the Bolivar High Salinity WWTP for their continued support. The 
authors also acknowledge the support the CRC for Low Carbon Living Ltd. (project RP2017) whose activities 
are supported by the Cooperative Research Centres program, an Australian Government initiative. 



74 

 

Supplementary Information (S1). PO4
3− removal profile for Trial A and B. 

 

Supplementary Information (S2). Interactive graph showing the taxonomic distribution of the microbia 
community from the 16S rRNA gene-based community sequencing data for the full-scale (aerobic feed) SBR 
CAS floc. 

 

Supplementary Information (S3). Interactive graph showing the taxonomic distribution of the microbial 
community from the 16S rRNA gene-based community sequencing data for Trial A (full anaerobic feed) 
AGS.  

Supplementary Information (S4). Interactive graph showing the taxonomic distribution of the microbial 
community from the 16S rRNA gene-based community sequencing data for Trial B (split An–Aer feed). 
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Supplementary Information (S5): Cluster plots showing Bray–Curtis similarities between full-scale CAS 
and AGS (Trial A and B) at the Phylum level (A), Class level (B) and comparison of the Proteobacteria Class 
(C).  Similarity coefficient of 100 means two samples share identical species distributions and a coefficient of 
zero means they share no common species. 

  

 

 

A) 

B) 

C) 
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Appendix D.  Research output 6: Understanding the role of wastewater feeding strategy (anaerobic 
or split anaerobic–aerobic) on AGS development and functional performance 
 

This research output has been published in the following: 

 

Citation: Thwaites, B.J., van den Akker, B., Reeve, P., Short, M.D., Dinesh, N., Alvarez-Gaitan, J.P., Stuetz, 
R. (2018) Ecology and performance of aerobic granular sludge treating high-saline municipal wastewater. 
Water Science & Technology, 77(4): 1107–1114; https://doi.org/10.2166/wst.2017.626. 
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Title: Ecology and performance of aerobic granular sludge treating high-saline municipal wastewater 
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Abstract: The successful development of Aerobic Granular Sludge (AGS) for secondary wastewater 
treatment has been linked to a dedicated anaerobic feeding phase, which enables key microbes such as 
poly-phosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) to gain a 
competitive advantage over floc-forming organisms. The application of AGS to treat high-saline sewage and 
its subsequent impacts on microbial ecology, however, is less well understood. In this study, the impacts of 
high-saline sewage on AGS development, performance and ecology were investigated using molecular 
microbiology methods. Two feeding strategies were compared at pilot scale:  a full (100%) anaerobic feed; 
and a partial (33%) anaerobic feed. The results were compared to a neighbouring full-scale conventional 
activated sludge (CAS) system (100% aerobic). We observed that AGS developed under decreased 
anaerobic contact showed a comparable formation, stability and nitrogen removal performance to the 100% 
anaerobically-fed system. Analysis of the microbial ecology showed that the altered anaerobic contact had 
minimal effect on the abundances of the functional nitrifying and denitrifying bacteria and Archaea; however, 
there were notable ecological differences when comparing different sized granules. In contrast to previous 
work, a large enrichment in PAO in AGS was not observed in high-saline wastewater, which coincided with 
poor observed phosphate removal performance. Instead, AGS exhibited a substantial enrichment in sulfide-
oxidising bacteria (SOB), which was complemented by elemental analysis that identified the presence of 
elemental sulfur precipitation. The potential role for these organisms in AGS treating high-saline wastewater 
is discussed. 

 

Keywords: Aerobic granular sludge; high-saline municipal wastewater treatment; microbial ecology, sulfide 
ecology 

 

INTRODUCTION 

Aerobic granular sludge (AGS) has been shown to be a viable option for various municipal wastewater 
treatment applications, with recognised advantages such as increased hydraulic capacity and reduced 
physical foot print. AGS is commonly achieved using sequencing batch reactors (SBRs), with the technology 
utilising rapid-settling, dense microbial granules in place of floc-based conventional activated sludge (CAS). 
The conversion process has been shown to be highly dependent on the implementation of a dedicated 
anaerobic feed and short sludge settling times. The anaerobic feed selects for slow-growing microbes such as 
polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), which have 
been shown to play a critical role in granule development. These microbes have been identified as being able 
to store the bioavailable organic carbon generated during the anaerobic feed (de Kreuk and van Loosdrecht, 
2004), with PAOs also playing a role in the removal of phosphate (PO4) (Bassin et al., 2012). These groups of 
bacteria are predominantly found within the phylum Proteobacteria and class Deltaproteobacteria and 
Gammaproteobacteria (Zhang et al., 2011, Diaz et al., 2003). 

 

Whilst AGS technology has been widely researched and applied in many locations worldwide, there is little 
known about the potential impacts of high-saline municipal wastewater on granule development and treatment 
performance. High-saline wastewater streams can result from groundwater infiltration into sewer networks 
(e.g. coastal locations) and often have high concentrations of sulfate and sulfide; this may lead to issues with 
granule formation and stability due to inhibition of extracellular polymeric substances (EPS) production, nitrite 
accumulation and PAO inhibition (Welles et al., 2014, Li et al., 2014). Previously, van den Akker et al. (2015) 
showed that development of AGS was possible in high-saline wastewater when using a dedicated anaerobic 
feed and long (≥ 2 hours) aerobic phase. Winkler et al. (2012b) showed that granules incubated for a short 
time in varied salinity concentrations (up to 40 g/L NaCl) had a reduced settling velocity that had the potential 
to cause biomass washout. However, once the salt concentration equalised there was no effect on settling 
velocity. This study was based on laboratory-grown granules under relatively short biomass salinity acclimation 
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periods (up to 24 h). Further work on the impact of varied salinity concentrations on the granulation process 
was conducted by Li et al. (2017) who found that rapid granulation occurred when operated under the highest 
percentage (100%) of seawater. The ammonia removal efficiency was initially reduced, however increased to 
90% after 140 days of operation. This study also found that the presence of seawater severely reduced the 
maximum ammonium and nitrite oxidation rates. 

 

To date, most of the published data on salinity impacts in AGS were largely derived from bench-scale reactors 
fed with synthetic wastewater and under periods of short-term exposure to high salinity conditions. 
Complementary field based research at larger scale is, therefore, required to validate laboratory findings. 
Accordingly, this study investigated the impact of high-saline municipal wastewater on AGS formation, stability 
and microbial ecology at pilot scale. Secondly, the impacts of different feeding strategies were investigated to 
better understand the influence of anaerobic versus aerobic feed conditions. Characterisation of the AGS 
community was done based on whole-of-community 16S rRNA profiles and targeted analysis of functional 
genes specific for nitrifying and denitrifying microorganisms, with AGS microbial ecology compared to a 
neighbouring full-scale CAS SBR at functional and whole-of-community levels.  

 

METHODOLOGY 

The pilot scale SBR was located at a large metropolitan wastewater treatment plant (WWTP) (Adelaide, South 
Australia), which receives high-saline (6,000–7,000 mg TDS/L) municipal wastewater, a result of high volumes 
of infiltration into the sewer network. The secondary activated sludge treatment at the full-scale WWTP consists 
of six SBRs with a design capacity of 32 ML/d. The pilot scale reactor (63.9 L volume) was located within a 
weather-proof climate controlled container and was controlled using programmable logic controllers allowing 
cycle times, volumetric exchange and air flow to mimic CAS maintenance or develop AGS (van den Akker et 
al., 2015). The pilot SBR was fed with screened (2 mm mesh) municipal wastewater (Table 1) sourced from 
the full-scale WWTP inlet and was inoculated with 3 g/L of flocculent biomass from the neighbouring full-scale 
CAS reactor.  

 

Table 1: Median concentration of key parameters found in the high-saline municipal sewage (n ≥ 10 ± 1SD). 

  Total COD 
(mg/L) 

Ammonia 
(mg/L) 

Total 
Nitrogen 
(mg/L) 

Sulfate 

 (mg/L) 
Conductivit

y (µScm) 

Total 
dissolved 

solids (TDS) 
(mg/L) 

High-
saline 
municipal 
wastewate
r 

534.9 ± 64.7 35.1 ± 3.2 55.8 ± 7.7 668.6 ± 90.8 11393.5 ± 
426.2 6535 ± 251.8 

 

The COD loading rates and cycle times that were used in the operation of the AGS pilot and Full-scale SBRs 
are given in Table 2. For the AGS trials, two feeding strategies were compared at pilot scale: A full 100% 
anaerobic feed (Strategy A) and a partial 33% anaerobic feed (Strategy B). Strategy A was assessed to 
investigate the impacts of AGS under high saline conditions using operational parameters analogous to 
previous AGS studies (Morgenroth et al., 1997, Beun et al., 1999). Strategy B was assessed to understand 
the impacts of AGS operating under lower COD loads which was comparable  to the neighbouring full-scale 
conventional activated sludge (100% aerobic feed) system (Strategy C). In light of the lower COD loads used 
in Strategy B, the impact of employing a reduced anaerobic feed duration was investigated as this further 
reduces the cycle time and makes AGS easier to retrofit within existing SBRs. The performance and stability 
of the AGS trials was monitored for 95 and 113 days.  

 

 



81 

 

Table 2: Operating parameters of the pilot AGS and full-scale CAS SBRs showing organic loading rates and 
cycle time phases. 

 
COD 

Loading 
(kg/m3/da

y) 

Anaerobi
c Feed 

(minutes
) 

Aerobic 
Feed 

(minutes
) 

Aeration 

(minutes
) 

Settling 

(minute
s) 

Decant 
(minutes

) 

Total 
Cycle 
time 

(minutes
) 

Trial 
time 

(days) 

Strategy A 
(100% 

Anaerobic) 
1.15 60 - 120 8 2 190 113 

Strategy B 
(33% 

Anaerobic) 
0.76 20 40 80 15 10 165 95 

Strategy C 
(100% Aerobic) 0.80 - 54 108 54 54 270 ∞ 

 

Biomass and Nutrient Analysis 

Nitrogen removal was examined throughout the trial periods by measuring COD, PO4-P, NH4+-N, NO2−-N and 
NO3−-N in wastewater, mixed liquor and secondary effluent. Analysis was conducted using HACH colorimetric 
test kits 8000, 8048, 10031, 10019 and 10020. Suspended solids concentration and morphology was 
examined twice weekly, sludge settleability was determined using a 30-minute Sludge Volume Index (SVI30) 
(APHA, 1998). Morphological changes were examined via light microscopy (Nikon (SMZ1000) and images 
were captured using Nikon Digital Sight (DS-U2, Japan) and NIS-Elements D 3.0 (Laboratory Imaging s.r.o.). 

 

Microbial Ecology Analysis 

Biomass samples were collected from each AGS feeding strategy (day 90). An additional sample was 
collected from the aerobically fed, full-scale CAS SBR. All biomass samples were stored at −80°C prior to 
preparation for molecular analysis. A biomass sample from Strategy A was size-separated using increasing 
mesh sieves (300, 1,000, 1,400 µm) with the retained biomass washed off the mesh using sterile tap water. 
DNA was extracted using PowerLyzer® PowerSoil® DNA Isolation Kit (MOBIO Laboratories Inc., Carlsbad, 
CA.) with the biomass being washed in sterile phosphate buffer saline (PBS) prior to following the 
manufactures extraction method. The extracted DNA was quantified using a Nanodrop 2000C 
spectrophotometer (Thermofischer, Delaware). Analysis was conducted on the nitrogen removal functional 
gene groups (ammonia-oxidising archaea/bacteria (AOA/AOB), nitrite-oxidising bacteria (NOB) and 
denitrifying bacteria) using quantitative polymerase chain reaction (qPCR) targeting 16S rRNA/functional 
gene primer sets by Reeve et al. (2016). The reaction was carried out in duplicate using a Rotor-Gene 3000 
(Corbett Research, Sydney, Australia). Each 25 μL reaction contained 4 mM MgCl2 (Invitrogen, Carlsbad, 
CA, USA), 5 μM of oligonucleotide primers (Geneworks, Adelaide, Australia), 0.2 mM dNTPs (Promega, 
Madison, WI, USA), 1× GoTaq PCR buffer (Invitrogen), 1 U of GoTaq (Invitrogen) and 2 μM SYTO9 
(Invitrogen). Thermal cycling conditions involved a primary denaturation at 95°C for 6 min, followed by 55 
cycles at 95°C for 20 seconds, 52–66°C for 30 seconds and 72°C for 30 seconds.  

High throughput sequencing was performed on the DNA extracted from the biomass samples collected on 
day 90. Genomic DNA was extracted using the same extraction method described above. DNA extracts 
were sent to the Australian Genomic Research Facility (Brisbane, Australia) where analysis was performed 
on an Illumina MiSeq sequencer using 16S rRNA gene specific primers targeting the region 341F to 806R.  

 

SEM and EDS Analysis 

Biomass samples were collected and freeze dried for 72 hours. Samples were then coated with gold to a 
thickness of 20nm. Scanning electron microscopy (SEM) was conducted using a Zeiss Merlin operated with a 
working distance of 6.0mm, electron high tension (EHT) of 10.00kV. Samples were further analysed using 
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energy dispersive x-ray spectroscopy (EDS) detector mounted into the SEM chamber. This allowed for 
detection and identification of the elemental composition of user-specified field of the sample. 

 

XFM Analysis 

Elemental X-ray fluorescence analysis was conducted to investigate granule structure, density and metals 
concentration using the X-ray fluorescence microscopy (XFM) beamline at the Australian Synchrotron 
(Paterson et al., 2011). Biomass samples from strategy A were freeze dried and mounted on Kapton tape for 
analysis. Images were analysed as per the protocol of Donner et al. (2011) with co-localisation determined 
using tri-colour mapping. 

 

RESULTS and DISCUSSION 

Start-up and performance 

During start up, there was a large increase in the mixed liquor biomass concentrations during the pilot trials 
with the final steady-state concentration being 5–7 g/L (Supplementary Figure 1A). The sludge settling 
performance achieved a SVI5/SVI30 ratio of 1.1 in the full anaerobic feed within 37 days, similarly the settling 
ratio of the partial anaerobic feed decreased to 1.2 within the initial 51 days of operation; this decreased ratio 
was consistent with previous findings by Liu et al. (2010). Analysis of the biomass morphology by light 
microscopy showed distinct changes in the biomass structure and development of clear granular formations. 
There was also an observable reduction in the filaments protruding the surface of the granular structures which 
was consistent with previous findings by (de Kreuk et al., 2005). 

 

Table 3: Process performance summary comparing AGS (Strategy A and B) and Full-scale SBR (Strategy 
C), showing the range (min-max) of nutrient removal performance (%) and biomass characteristics.  

 PO4 
Removal 

(%) 

NH4 
Removal 

(%) 

Total 
Nitrogen 
Removal 

(%) 

MLSS 
(g/L) SVI30 SVI5/SVI30 

Strategy A (100% 
Anaerobic) 5.4–49.7 77.8–99.7 16.0–97.5 1.7–8.8 37.5–238.2 1.1–2.1 

Strategy B (33% 
Anaerobic) 4.3–17.3 96.1–99.8 27.5–94.2 3.6–6.8 58.5–132.1 1.2–2.1 

Strategy C (100% Aerobic) n.d. 70.8–99.6 75.7–92.9 2.7–3.9 216.0–
360.0 n.d. 

 

The ammonia removal performance of all mature feeding strategies ranged between 70 and 99.7% with total 
nitrogen removal typically >75% (Table 3). Analysis showed decreased PO4 removal in the 33% anaerobic 
feed AGS (strategy B), when compared to the 100% anaerobic contact operation (strategy A), with median 
PO4 removals of 9.2 and 20.7%, respectively. The PO4 removal efficiency in the anaerobic contact 
investigations was greatly reduced when compared to the removal efficiency observed in the full-scale CAS 
operation and other AGS trials conducted in low-saline environments (Bassin et. al., 2012). The nitrogen and 
PO4 removal performance of AGS comparing both strategies A and B during start up is provided in the 
Supplementary Figure 1B and 1C. 

 

Microbial Ecology 

qPCR analyses compared key nitrifying and denitrifying microorganisms, with notable differences seen in the 
relative abundances of ammonium-oxidising bacteria (AOB), ammonium-oxidising archaea (AOA) and the 
NOB Nitrobacter sp. between the three feeding strategies (Figure 1A). The increased retention time (sludge 
age) of larger, denser granules can help explain the higher observed abundances of AOA within the AGS 
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biomass relative to full-scale aerobic CAS operation, with the oxygen and nutrient gradient most likely 
contributing to niche driven selective enrichment of slower-growing and less competitive archaeal ammonia-
oxidisers over AOB (Short et al., 2013). Similarly, the development of the granular structures and increases in 
density and oxygen gradient may have driven the development of a nitrite-loop as seen by the increased 
abundance of Nitrobacter sp. (of 1-2 log10) and increased NOB/AOB ratio (by 20,000-50,000) within AGS.  
Similarly an increase in the proportion of NOBs was also observed by Winkler et al. (2012a) which occurred 
when denitrifiers supply NOBs with nitrite through the reduction on nitrate, thereby forming a nitrite-loop. In 
this study, we did not observe an accumulation of nitrite or nitrate in the effluent or reduced total nitrogen 
removal performance. The size separated biomass was also analysed using qPCR for the target functional 
genes (see Figure 1B). Notably, there was an increase in the abundance of AOA, Nitrospirae and denitrifying 
bacteria within larger granules (>1,400 µm), which was likely a result of the steeper oxygen gradient that exists 
across larger granules. Higher sludge age of the larger granules (>1,400; Figure 1B) may have further 
contributed to the increased abundance of AOAs in this size fraction, given the slower growth rate of AOA 
relative to AOB (Pronk et al., 2015).  

 

  
Figure 1: Changes in the functional microbial ecology of biomass samples as determined by qPCR, 
comparing (A) Strategy A (100% anaerobic feed) Strategy B (33% anaerobic feed) and Strategy C (100% 
aerobic feed); and (B) the impact of AGS granule size (<300 µm, 300–1,000 µm, 1000–1,400 µm and 
>1,400 µm) for Strategy B. 

 

The increase in the abundance of Nitrospirae in the AGS samples seen within the qPCR was also confirmed 
through NGS sequencing, which showed an increase in abundance of phylum Nitrospirae organisms in 
samples taken from the two feeding strategies. Additionally, there was a clear increase in abundance of 
Nitrospirae in all granular morphologies when compared to the smaller floc like biomass (data not shown). This 
increase in abundance has previously been linked to the development of the oxygen gradient whereby a study 
by Guimarães et al. (2017) showed the localisation of Nitrospirae towards the core as the granule increased 
in volume, which corresponded with an increase in their abundance. 

 

Analysis of the high throughput sequencing data showed increases in phylum Proteobacteria from 55.1% in 
the 100% aerobic strategy C, to 66.8 and 72.5 in strategy B (33% anaerobic) and strategy A (100% Anaerobic) 
systems. This phylum contains class Betaproteobacteria and Gammaproteobacteria microbes, with these two 
classes including the PAO Candidatus phosphatis and glycogen accumulating organisms, respectively 
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(Lemaire et al., 2008). Relevantly, these microbes are known to be associated with AGS development and 
granular formation through the production of EPS (Figure 2). Further analysis of this class showed increased 
abundance of Betaproteobacteria in strategy A (100% anaerobic), with the opposite in strategy B (33% 
anaerobic). Within this class, next generation sequencing (NGS) analysis showed the greatest enrichment of 
the PAO Candidatus Accumulibacter phosphatis occurred during strategy A (1.3% total community 
abundance), compared with 0.13 and 0.17% for strategy B (33% anaerobic feed) and strategy C (100% aerobic 
feed), respectively. This lower relative PAO abundance coincided with the reduced PO4 removal performance 
observed within these systems. Furthermore, work by Wang et al. (2017) showed that the presence of 
increased abundances of Proteobacteria occurred within the high-saline granular sludge system while the 
abundance and metabolic activity of Betaproteobacteria decreased.  

 

 
Figure 2: Comparison of the relative abundances of micro-organisms at the phylum level for each feeding 
strategy, which was determined using next generation sequencing of 16S rRNA. 

 

In comparison to the CAS flocs, the class Gammaproteobacteria had increased by 18.4 and 20.8% during 
strategy A and B, respectively. This was largely attributed to a large enrichment in sulfide-oxidising bacteria 
(SOB) from the order Chromatiales and Thiotrichaceae, which collectively represented 23% of all operational 
taxonomic units (OTUs) compared to 6.6% within the CAS flocs. Size analysis of the separated granules found 
that the smallest granules had the highest representation of SOBs (Figure 3 A). It was possible that the 
uniquely high sulfate concentrations measured within the high-saline sewage (0.6-1.0 g/L) combined with the 
use of an anaerobic feed in the granular sludge pilot reactors, created conditions that favoured sulfate 
reduction, which provided a source of sulfide for the development of the SOBs. Following this, investigation of 
the sulfate-reducing bacteria (SRB) population showed no large increase in abundance of SRBs within the 
granular sludge biomass when compared to CAS (Figure 3 B). SRBs were however well represented at >1.8% 
of OTUs within all floc and AGS samples. The increase in abundance of the SOB population in AGS may 
indicate that these organisms played important roles in the development and stability of AGS in high-saline 
and high-sulfide wastewaters. In this system sulfide may be oxidised by SOB under aerobic and/or anoxic 
conditions (i.e. autotrophic denitrification) due to the existence of an oxygen gradient within the AGS granules. 
Furthermore Rubio-Rincón et al. (2017), recently showed that the SOB Thiothrix (a genus in the order 
Thiotrichaceae) could also play an important role in biological phosphate removal under high sulfide conditions. 
The role of SOB in AGS performance treating high-saline wastewater requires further investigation.    
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Figure 3: Changes in abundance of sulphide oxidising bacteria (A) and sulfate reducing bacteria (B) of size 
separated granules (<300 µm, 300–1000 µm, 1000–1,400 µm and >1,400 µm) that were sampled during 
Strategy B (33% anaerobic feed), with comparison to Strategy C (full-scale 100% aerobic feed). 

 

Scanning Electron Microscopy (SEM) and X-Ray Florescence Microscopy (XFM) 

SEM analysis comparing AGS and CAS samples identified very different external surface structures (Figure 
4) and elemental composition. The AGS surface resembled microorganisms embedded in an 
exopolysaccharide-like crust. In contrast CAS was dominated by filamentous structures. EDS undertaken 
during SEM analysis indicated enrichment of sulfur on the surface of AGS, containing on average 2.9 At/wt% 
compared to 0.8 At/wt% detected on the CAS sample (Supplementary Figure 2).  

  
Figure 4: Scanning electron micrograms comparing the surface structure of (A) AGS granules taken from 
strategy B (33% anaerobic feed) and (B) biomass from strategy C (100% aerobic feed). Scale bar represents 
10μm and 20μm respectively.  
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Elemental analysis of AGS using XFM (Figure 5) complemented the EDS analysis (Supplementary Information 
Figure 2) which showed hot spots of elemental sulfur (red) precipitation as well as localisation of copper (blue) 
and zinc (green), which appeared to have strong affinity to co-localisation (cyan) with no apparent interaction 
between sulfur and both copper (purple) and zinc (yellow). Further analysis showed the sulfur concentration 
was 2.99 wt% with the zinc and copper forming 0.038 and 0.046 wt%, respectively. The evidence of elemental 
sulfur deposition within the granules can potentially be explained by the increase in abundance of SOB within 
the AGS samples when compared to the CAS sample, given the oxidation of hydrogen sulfide by SOBs can 
result in the production of elemental sulfur or sulfate. While only preliminary at this stage and lacking a CAS 
comparator, XFM results together with EDS and NGS observations suggest a potential role for SOB in AGS 
under high-saline (high sulfate) wastewater applications that warrant further investigation.  

 
Figure 5: Tricolor map from the X-Ray Florescence Microscopy of AGS showing sulfur (red), zinc (green) and 
copper (blue). 

 

CONCLUSIONS 

This pilot study showed that the formation and stability of AGS treating high-saline wastewater may not be as 
critically dependent on long anaerobic feeding conditions as previously published research suggests. The 
start-up time, stability and performance of AGS in the split anaerobic/aerobic feed (Strategy B) was comparable 
to that with a dedicated anaerobic feed (strategy A). Analysis of the functional genes responsible for nitrification 
and denitrification showed changes in reactor functional microbial ecology between the two anaerobic feeding 
strategies, with no change in the nitrogen removal performance of the biomass. Reduced PO4 removal 
performance was seen under partial anaerobic feed strategy B relative to the 100% anaerobic feed Strategy 
A, with high throughput sequencing suggesting that this was likely the result of reduced PAO abundance. The 
increase in abundance of SOBs in AGS indicates a potential role for these organisms in AGS development 
and stability, and warrants further investigation. This study has shown that AGS can be achieved and 
maintained with more challenging sewage characteristics such as those found in higher saline, high-sulfide 
municipal wastewater. 
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Supplementary Material 

 

Supplementary Figure 1: Granular sludge influent ammonium-N concentrations, effluent concentrations of 
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ammonium-N, nitrite-N and nitrate-N and phosphate-P removal rates during start up comparing (A) Strategy 
A and (B) Strategy B. Figure 1C shows the development of AGS biomass in comparison the neighbouring full-
scale SBR CAS biomass 

A) 

 
 

B) 

  
Supplementary Figure 2. EDS spectrum comparing elemental composition of AGS biomass from (A) 
Strategy B (33% anaerobic feed) and (B) biomass from Strategy C (100% aerobic feed) and the 
corresponding SEM fields of view used for EDS analysis 
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Appendix E.  Research output 7: Implications of AGS versus CAS operation on microbial pathogen 
removal performance and the subsequent downstream implications for water recycling operations 
 

This research output has been published in the following: 

 

Citation: Thwaites, B.J., Short, M.D., Stuetz, R.M., Reeve, P.J., Alvarez-Gaitan, J.-P., Dinesh, N., van den 
Akker, B. (2018) Comparing the performance of aerobic granular sludge versus conventional activated 
sludge for microbial log removal and effluent quality: implications for water reuse. Water Research, 145: 
442–452; https://doi.org/10.1016/j.watres.2018.08.038. 

 

  

https://doi.org/10.1016/j.watres.2018.08.038
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Graphical Abstract: 

 

Abstract: The application of aerobic granular sludge (AGS) technology has increased in popularity, largely 
due to the smaller physical footprint, enhanced biological nutrient removal performance and ability to perform 
with a more stable operation when compared to conventional activated sludge (CAS) systems. To date, the 
ability of AGS to remove microbial pathogens such as; Escherichia coli, Giardia, and Cryptosporidium has not 
been reported. This study compared the log10 removal performance of commonly used pathogen surrogates 
(sulfite-reducing clostridia spores, f-RNA bacteriophage, E. coli and total coliforms) by AGS and CAS during 
the start-up phase, through to maturation. Results showed that AGS performed as well as CAS for the log10 
removal performance of all microbial surrogates, except for spores which were removed more effectively by 
AGS due most likely to greater adherence of spores to the AGS biomass compared to CAS mixed liquor. 
Results suggest that AGS is capable of meeting or exceeding CAS-equivalent health-based targets for 
pathogen removal in the context of water recycling as well as not adversely affecting the secondary effluent 
water quality (suspended solids, turbidity and particle size) in terms of ultraviolet light transmissivity (254 nm). 
These findings confirmed for the first time that the adoption of AGS operation would not adversely impact 
downstream tertiary disinfection processes from altered water quality, nor would it require further pathogen 
treatment interventions in addition to what is already required for CAS systems.   

 

Keywords: Aerobic granular sludge, biological nutrient removal, pathogenic indicator removal, wastewater 
recycling 

 

1. Introduction 

The use of aerobic granular sludge (AGS) in sequencing batch reactors (SBRs) has emerged as a viable 
alternative technology to traditional floc-based conventional activated sludge (CAS) for secondary level 
wastewater treatment. AGS conversion is achieved by modifying the operating parameters of SBRs to 
encourage CAS flocs to form dense, rapid-settling microbial granules. The conversion process has previously 
been shown to be heavily dependent on the application of an anaerobic feed combined with reductions in 
biomass settling time prior to decanting (Beun et al., 1999, de Kreuk, 2006, Pronk et al., 2015). Together, 
these changes allow for the selection of slow-growing microorganisms (polyphosphate-accumulating 
organisms (PAOs) and glycogen-accumulating organisms (GAOs)) and washout of slow-settling microbial 
flocs, respectively (Bassin et al., 2012, Liu and Liu, 2006). This increased settling velocity of granular sludge 
allows for reduced cycling times (i.e. increased hydraulic capacity) resulting in reduced wastewater treatment 
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plant (WWTP) physical footprint (i.e. reduced infrastructure requirements) for new plants while increasing the 
hydraulic capacity of existing plants.  

The role played by CAS processes for pathogen inactivation and removal from wastewater have been 
extensively studied (George et al., 2002, Koivunen et al., 2003, Lucena et al., 2004, Zhang and Farahbakhsh, 
2007). These studies have shown that pathogens are removed through two main methods: predation; and/or 
biomass adsorption. Predation can be highly dependent on biomass characteristics (Raboni et al., 2016), with 
bacterial removal previously shown to occur primarily by protozoan grazing during the aerobic phase (Curds, 
1973). This is in contrast to virus removal, which occurs primarily as a consequence of biomass adsorption 
(Bales et al., 1993, Gray, 1990). Viruses adhere to the surface of the biomass and subsequently subjected to 
microbially-mediated inactivation, or physically removed via sedimentation (Arraj et al., 2005, Ng et al., 1993b, 
Ng et al., 1993a). Configuration of CAS operations can also influence virus removal, with Tanji et al. (2002) 
showing increased adsorption of phage (bacterial viruses) when the biomass was exposed to anaerobic–
aerobic treatments.  

While the benefits of adopting AGS have been extensively researched and documented over the last ten years, 
there is no current knowledge of how changes in the biomass structure (from CAS to AGS) affects pathogen 
removal performance. This has particular importance in the context of water recycling, where secondary 
treatment processes such as CAS also function as a critical treatment ‘barriers’ for pathogen removal, enabling 
water authorities and regulators to satisfy part of the health-based targets for water reuse (Wen et al., 2009, 
NRMMC et al., 2006) thus reducing the extent of additional tertiary treatment requirements. In Australia, for 
example, wastewater treatment processes—including CAS—are commonly assigned log10 removal values 
(LRVs) based on verified bacterial, protozoan and viral pathogen removal performance when configured as 
part of water recycling schemes under the national Guidelines for Water Recycling (NRMMC et al., 2006). 
These guidelines outline the required scheme-wide LRVs necessary for a given reuse scheme and recycled 
water end-use. Under these guidelines, elements with variable configuration and operation such as CAS 
systems require validation to demonstrate that the process can provide effective and reliable pathogen 
reductions. Validation is often based on characterising the LRV performance of reference pathogenic 
microorganisms, or their appropriate surrogates (e.g. spores, bacteriophage, faecal coliforms) and is typically 
performed under anticipated normal operating conditions. Validation studies have shown that pathogen 
removal during CAS treatment can typically achieve bacterial, protozoan and virus removals of 1.0–2.2, 0.7–
2.5 and 1.9–2.5 log10 respectively (Wen et al, 2009).  

For water recycling schemes in particular, it is important to understand the performance of AGS in regards to 
pathogen removal, as any loss in LRV capacity may require additional tertiary treatment interventions in order 
to meet stringent health-based targets for intended end use or discharge for environmental flows. Alternatively, 
there would be additional requirements placed on irrigators to implement different methods of irrigation to 
control dispersion. Additionally, there is no information currently available on the relative pathogen removal 
performance of AGS during start-up conditions, information that is important for WWTP operators to 
understand due to the significant changes that occur with regards to both biomass morphology and surface 
characteristics, and subsequent effluent water quality. Furthermore, the downstream impacts of AGS operation 
on effluent water quality also need to be considered, as any adverse change in the treated water quality 
parameters such as total suspended solids (TSS), turbidity, colour, UV transmissivity (UVT) may impact on 
the performance and operational cost of UV and chlorine disinfection processes, which play an important role 
in delivering a robust multi-barrier approach to health risk management of recycled water. These impacts need 
to be investigated to ensure that any savings achieved by implementing AGS operation are not offset by the 
need for additional operational or capital expenditure due to loss in pathogen LRV performances or altered 
effluent water quality. 

This study details the first investigation of pathogen LRV performance of AGS treatment (from start-up to 
mature operation), which was compared side-by-side with CAS operations at pilot scale. The variability in LRV 
performance was also characterised and linked to changes in effluent water quality, including UVT, SS and 
turbidity. LRV performance was based on the removal of four recognised pathogen surrogates in accordance 
with validation protocols of reuse schemes (Victorian Department of Health, 2013). This included sulfite-
reducing clostridia (SRC) spores (conservative protozoan surrogate); f-RNA bacteriophage (human virus 
surrogate); Escherichia coli (E. coli); and total coliforms (TC) (bacterial pathogen surrogates). These 
surrogates are widely used in validation exercises as they are typically more abundant in sewage than human 
pathogens and therefore allow high magnitude LRVs to be measured. The abundance and diversity of higher 
organisms in the two pilot reactors was also assessed, given the potential importance of predation on pathogen 
reduction in activated sludge systems.  
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2. Methodology 

2.1 Pilot plant description 

A pilot facility comprising two pilot reactors (Figure 1B) for CAS and AGS was established at a metropolitan 
WWTP in Adelaide, South Australia. The pilot plants used in this study have previously been described in 
detail by van den Akker et al. (2015). In short, pilot reactors had operating volumes of 61.5–63.5 litres and 
received untreated municipal sewage screened to ≈1 mm from the inlet of a neighbouring full-scale SBR plant. 
The typical feed sewage characteristics are shown in Table 1. SBR cycles of feed, aeration, settle and decant 
were controlled using a programmable logic controller. Both pilot plants were seeded with CAS harvested from 
a neighbouring full-scale SBR, to give an initial biomass concentration of 2 g/L when filled to operating volume.  

Table 1: Typical influent sewage characteristics (in mg/L) of the high-saline municipal wastewater received at 
the full-scale SBR plant and pilot facility. 

 TSS NH4+-N TN PO4−-P COD 

Mean ± 1 S.D. 150 ± 50 29.5 ± 2.8 30.6 ± 2.9 13.1 ± 1.71 414 ± 78.4 

Range (min–max) 83–260 25.9–35.9 27.1–37.3 9.4–16.4 320–574 

 

The CAS and AGS pilots operating conditions are given in Table 2. Briefly, the CAS pilot was operated with 
an aerobic feed and long settling time of 60 minutes to mimic the operation of the neighbouring full-scale SBR, 
whilst the AGS pilot was operated with an anaerobic feed and decreased settling time which had reached 12.5 
minutes.   

Table 2: Cycling conditions (in minutes) for both pilot plants. 

 Anaerobic 
feed 

Aerobic 
feed Aeration Settling Decant Total time 

AGS Pilot 60 0 120 12.5–30 15–32.5 225 

CAS Pilot 0 60 60 60 35 225 

 

Loading and wastewater conditions for the CAS and AGS pilots are given in Table 3. The pilots were filled 
aerobically (CAS) or anaerobically (AGS) dependant on desired operating outcome with a volumetric exchange 
ratio of 25%. The dissolved oxygen (DO) concentration in the CAS and AGS pilots was maintained between 
1.0–2.5 mg/L and 0.5–2.5 mg/L respectively for the duration of the trials (113 days). Settling time was reduced 
in the AGS pilot from 30 to 12.5 minutes over 74 days (immature phase days 0–73) with the pilot running 39 
days (mature phase days 74–113) continuously at this settling time.  

Table 3: Pilot plant performance data during the 113 day study (data in parentheses shows minimum and 
maximum performance range for each parameter) 

 
Dissolved 
oxygen 
(mg/L) 

Organic load 
(COD kg/m3/d) 

Nitrogen load 

(TN kg/m3/d) 
MLSS 
(g/L) 

Temperature 
(°C) 

AGS 
Pilot 0.5–2.5 0.50 0.047 (0.042–

0.057) 
2.95 (1.77–

4.67) 
23.6 (18.8–

27.2) 

CAS Pilot 1.0–2.5 0.50 0.049 (0.043–
0.059) 

2.37 (1.66–
2.75) 

23.4 (15.2–
25.9) 

 

2.2 Monitoring and analysis 

Wastewater treatment performance was monitored during the trial through the measurement of influent and 
effluent NH4+-N, NO2−-N, NO3−-N, PO4−-P and COD using commercial HACH® test kits (10031, 10019, 10020, 
8048 and 8000 respectively). Total dissolved solids were analysed using HACH sensION 7 (USA). Mixed liquor 
was analysed for suspended solids (MLSS), effluent TSS and settleability using a 30-minute sludge volume 
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index (SVI30) following standard methods (APHA, 1998). Changes in mixed liquor morphology were observed 
by light microscopy (Nikon, SMZ1000). Filamentous bacteria and higher organism identification and 
enumeration was conducted on CAS and mature AGS biomass samples (n = 3) at the Australian Water Quality 
Centre (Adelaide, Australia) according to the methods of Eikelboom (2000) and Jenkins (2003). 

UVT analysis was conducted using a GENESYS 6™ UV-Vis spectrophotometer (Thermo Electron 
Corporation, Madison, Wisconsin, USA), with 5 mL samples placed into the quartz cuvette and absorbance 
analysed at 254 nm. Turbidity was measured using 2100N Turbidimeter (HACH). 10 mL samples were placed 
into the glass cuvette, inverted several times to mix, then analysed and reported as nephelometric turbidity 
units (NTU). 

2.3 Sampling program 

Grab samples of screened influent sewage, mixed liquor and treated secondary effluent were taken 
periodically during the trial phases. Influent sewage was sampled from an access point located immediately 
prior to the pilot reactors, mixed liquor samples were collected during aeration and effluent samples were 
collected from two locations: location A decant point (Figure 1, location A); and location B in to replicate a 
surface decant weir sample location used by full-scale SBRs (Figure 1, location B). Samples were collected 
between the hours of 0700 and 1100 and stored at <4°C prior to same-day microbial analyses. 

  
Figure 1: Schematic of the SBR pilot plants (A) operated for both AGS and CAS, showing the two 
effluent sampling locations (A and B) and (B) side-by-side pilots onsite 

 

2.4 Microbial indicator analyses 

Indicator bacteria (E. coli and TC) and the more conservative sulfite-reducing clostridia (SRC) spores were 
assayed as outlined below after serial dilution of samples in sterilised UltraPure (Barnstead) water. For E. coli 
and TC, 100 mL of diluted sample was filtered through 0.45 μm gridded filter membranes (47 mm, Millipore, 
S-Pak), with the membrane placed onto the surface of a dried plate of selective agar (Brilliance, Oxoid 
CM1046) and inverted and incubated aerobically at 37°C for 24–36 h. E. coli was enumerated by counting 
blue colonies, while TC were enumerated by counting both purple and blue colonies. E. coli colonies were 
confirmed by negative reactions to Oxidase Test Strips (Oxoid, MB0266). SRC spore abundance was 
assessed on agar plates using Perfringens Agar Base (Oxoid CM0587) plus Perfringens Selective Supplement 
(SR0088) for Clostridium perfringens. Samples were filtered through 0.45 μm gridded filter membranes (47 
mm, Milipore, S-Pak) and incubating inverted anaerobically at 35 ± 1°C for 24–36 h. Prior to dilution a 50 mL 

A B 
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aliquot of each sample was heated to 70°C for 20 minutes to inactivate vegetative cells (Adcock and Saint, 
2001). E. coli, TC and SRC abundance was expressed as colony-forming units (CFU) per 100 mL. 

f-RNA bacteriophage was quantified using the double agar layer technique as outlined in Noble et al. (2004). 
Briefly, E. coli F-amp host (ATCC #700891) was cultured in TSB until growth phase was established (4-6 
hours), this was confirmed using absorbance spectrophotometry and pre-determined optimal range. 100 μL of 
E. coli culture was added to molten tryptone soya agar (TSA) overlay containing 3mL of sample. Overlay 
samples were inverted to mix and then spread evenly over dried TSA plates impregnated with 10 mg/L 
Ampicillin (Sigma-Aldrich). Agar overlays were allowed to cool and set before being inverted and incubated 
aerobically for 24 h at 37 ± 1°C. Phage numbers were determined by counting plaques (cleared zones) >2 mm 
and final abundance were expressed as plaque-forming units (PFU) per 100 mL. All microbial indicator 
abundance data was log10 transformed for presentation and further analysis. 

 

2.5 Filamentous and higher organism analysis 

Enumeration of filamentous bacteria was performed at the Australian Water Quality Centre (Adelaide, 
Australia) using the in-house testing method TM-054, which was based on conventional microscopy of the 
morphological features using the manuals by Eikelboom (2000) and Jenkins (2003). The relative abundance 
of 21 types were assessed qualitatively using a scoring to characterise filament abundance ranging from 0 
(none) to 6 (excessive). Every sample was analysed by the same specialist to maintain consistency. 

Higher organisms (namely protozoa and macroinvertebrates) were enumerated. Spirochaete and Zooglea sp. 
were analysed in parallel to filaments. Enumeration was based on conventional phase contrast microscopy of 
the morphological features using the methods described by Lindrea et al. (1999). The relative abundance of 
protozoan (free swimming ciliates, stalked ciliates, flagellates, suctoria, naked amoeba, testate amoeba and 
swimming amoeba), macroinvertebrates (rotifers and nematodes) and other organisms (spirochaetes and 
zooglea sp. ) were scored semi-quantitatively ranging from absent (-); 1-2 observed (-/+); 5-10 observed (+); 
10-100 observed (++); and >100 observed (+++). 

 

2.6 Statistical analyses 

Changes in nutrient removal performance were examined by nonparametric ANOVA (Brown-Forsyth 
ANOVA and Bartlett’s t-test) analysis (immature AGS, Mature AGS and Mature CAS comparisons), 
unpaired t-tests (Mann-Whitney) were utilised to investigate the change in microbial indicator removals and 
effluent quality (suspended solids, UVT and Turbidity). Statistical significance was accepted at the p<0.05 
level, with all analyses conducted using PRISM 6 (Version 6.07, GraphPad software, California, USA). 
Similarity of the filamentous bacteria and higher organism ecology in AGS and CAS were assessed using 
Bray-Curtis similarity analysis using Primer 6 (Primer-E, Pylmouth, UK) using average observed abundance 
values.  

 

2.7 Probability density function (PDF) fitting 

Microbial indicator data variability within the sampled influent, mixed liquor and decanted effluent was 
characterised by fitting exceedance probability plots. This form of analysis was utilised as it describes the data 
variability as used to inform quantitative microbial risk assessments. Indicator abundance was fitted with a 
normal probability distribution using @Risk software (Palisade Corporation, version 7.5) in order to perform a 
Monte Carlo simulation to determine the variation in indicator removal performance between immature AGS, 
mature AGS and the matured CAS pilots.  

 

2.8 Biomass homogenisation  

Mature AGS and CAS biomass samples were homogenised to detach microbial indicators in order to assess 
and compare the relative partitioning of microbial indicators between the liquid (wastewater) and solid 
(biomass) phases. Biomass samples (n = 4) were homogenised in the presence of a 1× Zwittergent 3-12 
(Merc-Millipore) at 8000 rpm (WiseTis Homogeniser, Thermoline Scientific) for a total of 4 minutes, with 
homogenisation being completed in one minute intervals (Caron et al., 2007). Indicators were measured before 
and after biomass homogenisation using methods outlined in Section 2.4 for un-homogenised samples.  
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2.9 Particle sizing 

Particle size distribution (0.37–460.27 µm) was analysed using 100 mL CAS and AGS pilot reactor effluent 
samples collected from sampling location B (Figure 1) using a LISST-Portable instrument (Sequoia Scientific, 
USA). Full-scale secondary effluent was also collected and analysed to allow for direct comparison with the 
pilot scale data. Effluent samples were analysed in undiluted form, while non-homogenised and homogenised 
mixed liquor samples were diluted in sterile water to within acceptable analytical limits for the instrument. All 
samples were analysed in triplicate and the instrument chamber was rinsed with sterile ultrapure water 
(Barnstead) between samples. Particle size distribution was analysed using LISST Portable XR software, with 
final particle abundance given as number particles/L. 

 

3. Results and Discussion 

3.1 Pilot facility start-up and maturation 

Figure 2 compares the SVI30 for both the AGS and CAS pilots over the study period (113 days). Analysis of 
the sludge settleability showed significant improvement in settling velocity for the AGS pilot over the initial 58 
days of operation. During this time, AGS was achieved using the biomass washout technique whereby the 
settling time was reduced from 30 minutes down to 12.5 minutes. The formation of granules coincided with an 
increase in the biomass concentration (3.09 g/L to 4.67 g/L) with the AGS system and was considered to be 
mature from day 74 where it maintained an average SVI30 of 92.3.  

In contrast to the AGS results, the SVI30 of the CAS system was consistently higher during the entire trial and 
was statistically similar to that of the full-scale SBR (t(44)=0.291; p=0.134) with average SVI30 of 282.9 and 
286.7 mL/g MLSS respectively. For comparison, Figure 2 also shows the full-scale SBR SVI30 over the same 
period, with results showing that both pilot and full-scale CAS plants were operating with similar sludge settling 
characteristics.  

 

  
Figure 2: Biomass settleability (SVI30; symbols) and mixed liquor suspended solids (MLSS; bars) for AGS, 
CAS and full-scale CAS SBR. 

 

3.2 Nutrient removal performance and mixed liquor morphology 

The nutrient removal performance of the pilots during mature (CAS) and immature (0–74 days) plus mature 
(75–113 days) (AGS) operation are summarised in Figure 3. For the AGS pilot, and despite distinct changes 
in biomass morphology from immature flocs to mature granules (Figure 4), nitrification performance was 
consistently high, as evidenced by the >95% ammonium removal performance throughout the trial. These 



98 

 

NH4+-N removals are consistent with previously published studies (de Kreuk et al., 2005, Bassin et al., 2012) 
despite the change in morphology. Statistically, NH4+-N removal performance was similar between the AGS 
and CAS pilots, irrespective of operational maturity (F(2,34)=1.03; p=0.368).  

Total nitrogen removal efficiency, although statistically similar between AGS and CAS pilots (t(35)=0.350; 
p=0.599), was quite variable and was likely attributed to the over-aeration in some cycles due to limitations 
with the pilot facility aeration control system, leading to impaired denitrification and oxidised nitrogen (NO3−-N) 
accumulation similar to those observed in previous studies (Thwaites et al., 2017, van den Akker et al., 2015) 
(Supplementary Figure 1).  

 

 
Figure 3: Treatment performance data (100–(Ceffluent/Cinfluent)×100) for immature (0–73 days) and mature (74–
113 days) AGS and CAS pilots over the trial period (chart represented mean ± 1 S.D).  

Soluble phosphate-phosphorus (PO4−-P) removal was similar between both AGS and CAS pilots (t(28)=0.880; 
p=0.386) regardless of biomass maturity. Net phosphate removals in the AGS reactor were markedly reduced 
when compared to the expected >90% removals seen in other studies (Bassin et al., 2012, de Kreuk et al., 
2005, Pronk et al., 2014) and Winkler et al. (2011) who showed P-removal efficiency of 71 ± 5%. This may be 
indicative of the AGS being dominated by GAOs over PAOs (Winkler et al., 2011). Soluble COD removals 
were statistically similar between the AGS and CAS pilots (t(24)=0.485; p=0.632) at around 35–40%, with the 
total COD removals also similar on average (t(9)=0.676; p=0.52) at between 60–63%. 

Morphological analysis of mixed liquor from pilot reactors via light microscopy revealed a distinct change in 
appearance with the conversion of CAS to AGS operation (Figure 4). Figure 4 shows the changes in mixed 
liquor morphology when examined using light microscopy with the distinct granular structure being observed 
by day 74 and maintained until the end of the trial. Figure 4A shows the mixed liquor that was used to seed 
the pilot operations, Figure 4B and C shows the biomass morphology at day 113.  

Morphological analysis of mixed liquor from pilot reactors via light microscopy revealed a distinct change in 
appearance with the conversion of CAS to AGS operation (Figure 4). Figure 4 shows the changes in mixed 

   
Figure 4: Mixed liquor suspended solids at day 0 (A) and at day 113 (B + C) from the AGS pilot. Scale bar 
represents 100μm 
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liquor morphology when examined using light microscopy with the distinct granular structure being observed 
by day 74 and maintained until the end of the trial. Figure 4A shows the mixed liquor that was used to seed 
the pilot operations, Figure 4B and C shows the biomass morphology at day 113.  

 

3.3 Sampling location effects 

It is important to note that both of the pilot reactors were built with a static decant outflow point that was situated 
above the settled sludge bed (Figure 1A). It was recognised that the effluent quality taken from this decant 
location may not be representative of treated secondary effluent that is collected from a surface decant weir 
which are common with most SBR installations. For example, there is potential for elevated suspended solids 
being discharged due to the close proximity of the decant point to the settled sludge bed, which can also result 
in increased abundances of viable pathogens and indicators. Parallel grab samples were therefore collected 
from the top of the reactors (Figure 1, Sample location B) to simulate off-take from a surface decant weir. 
Statistical analyses was then conducted comparing effluent concentrations of microbial indicators enumerated 
from the two decant locations and this showed that there were no significant differences between the two 
sample points for both CAS and AGS for all of the surveyed indicator organisms (Supplementary Table 1). 
Since both sample points produced statistically similar indicator organism abundances, data points from both 
sample locations were pooled for analysis and presentation hereafter.  

 

3.4 Abundance of microbial surrogates 

Abundances of microbial indicators were assessed within the influent sewage, biomass (MLSS) and treated 
secondary effluent of both CAS and AGS pilot plants using frequency distribution probability plots (Figure 5). 
Having data in this format provides an appreciation for inherent variability of treatment performance. Average 
concentrations of E. coli, TC and SRC spores in the influent sewage were 5.31×107, 5.15×108 and 3.56×105 
CFU/100 mL respectively; while influent f-RNA phage concentration was on average 9.56×104 PFU/100 mL 
(Figure 5). This analysis also showed that there was an average increase of approximately 1-log in abundance 
of SRC spores present in the AGS (1.38 ×106) and CAS (1.58 ×106) biomass samples when compared to the 
influent sewage. This accumulation was in contradiction to the other indicators analysed which showed 
approximately 1-log decrease in the biomass samples, indicating the potential for SRC spores to adsorb and 
accumulate within the biomass. Analysis of the effluent samples taken showed concentrations of f-RNA 
concentrations were from the AGS pilot showed the average abundance of 2.72×102 (AGS) and 4.17×102 
(CAS) PFU/100mL for f-RNA, 3.50×104 (AGS) and 7.54×104 (CAS) CFU/100 mL for SRC, 3.11×104 (AGS) 
and 8.43×104 (CAS) CFU/100mL for E. coli, 2.38×105 (AGS) and 6.63×105 (CAS) CFU/100 mL for TC 
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Figure 5:  Frequency distribution plots showing the abundances of microbial surrogates within the sewage, 
mixed liquor and effluent of CAS and AGS pilot plants. 

 

3.5 Log10 removal performance of microbial indicators 

Log10 removal value (LRV) indicator performance PDF plots for both the CAS and AGS pilot (both immature 
and mature AGS) are presented in Figure 6. Monte Carlo simulation PDF fitting of all indicators enumerated 
from the raw sewage and decanted effluent was successfully achieved by applying a normal distribution. 
Median LRVs for E.coli and TC were only slightly higher for AGS (2.6- and 2.4-log10 respectively) when 
compared to CAS (2.4- and 2.0-log10 respectively). These values also compared well to the removal 
performance for CAS and secondary processes for f-RNA, E. coli and TC obtained from previously reported 
validation trials (Wen et al., 2009, NRMMC et al., 2006). Median LRV for f-RNA phage was the same for mature 
AGS and CAS at 2.4-log10 (Figure 6B). Interestingly, the median f-RNA phage LRV performance of the 
immature AGS (0–73 d operation) was 0.37 log10 greater than the mature AGS and CAS systems. To better 
understand the effects of AGS biomass morphology on pathogen removal, LRV performance was plotted over 
time from start-up to day 113 (Supplementary Figure S2). For SRC spores, LRV performance significantly 
improved around day 45–55 (Supplementary Figure 2B) which coincided with the time of granule maturation. 
An explanation for this improved LRV performance is unclear; however, it is possible that changes in biomass 
surface properties that occur during AGS start-up and maturation, such as increased EPS production (Liu et 
al., 2004, McSwain et al., 2005, Wingender et al., 1999), may have enhanced the potential for pathogen 
biomass attachment. For example, adsorption is considered a major removal mechanism of viruses in CAS 
systems (Wolfaardt et al., 1999), with previous work examining virus removal by CAS showing that virus 
interactions change with altered biomass morphology (Schijven et al., 2003). 
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Figure 6: PDFs fitted using Monte Carlo simulations showing the log10 removal values (LRV) for immature AGS 
(green); mature AGS (red) and CAS (black) for all microbial surrogates. 

 

The LRV of SRC spores (Figure 6A) was lower than that of the surveyed vegetative indicator (E. coli and TC) 
bacteria and phage in both CAS and AGS and therefore can be viewed as a conservative estimation for the 
worst-case removal performance benchmark for risk assessment purposes. The median LRV of SRC spores 
was however greater in the mature AGS (0.91-log10) when compared to CAS (0.46-log10) and immature AGS 
(0.78-log10) (Supplementary Table 2). Given anaerobic spores are known for their ability to strongly adhere to 
biomass and resist predation, the nature of this improved LRV performance of AGS over CAS was further 
investigated in Sections 3.6 and 3.7. 

While mean LRVs for E. coli (2.64 and 2.38) and TC (2.42 and 2.02) were similar between CAS and AGS 
respectively, probability plots showed that LRV variability was moderately higher in the CAS system (Figure 
6C and D). When comparing 5th percentile LRV, the mature AGS outperformed CAS with regards to E. coli 
(1.45 and 0.64), TC (1.29 and 0.56) and SRC spores (0.31 and -0.27) by a LRV difference of 0.6–0.8-log10 

(Supplementary Table 2).  

 

3.6 Indicator organism adsorption potential of biomass  

Initially, the biomass samples from CAS and AGS were homogenised in order to compare the role of 
adherence/adsorption of microbial indicators to biomass. Secondly, comparison of higher organism 
abundances in CAS and AGS was also done to see if the potential for predation differed between the two 
systems. Samples of AGS and CAS were homogenised to detach phage, spores and bacteria to investigate 
and compare the potential role of biomass adsorption and accumulation in the removal of indicator organisms. 
The abundances of indicator organisms were calculated and compared in both homogenised and non-
homogenised samples (Figure 7). Homogenisation of biomass samples from both mature AGS and CAS 
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showed increased abundances (release) of all microbial indicators following the homogenisation treatment 
(Figure 7). Following homogenisation of AGS mixed liquor, organism abundances increased by 1.05-log10 for 
SRC spores (t(35) = 5.17, p<0.0001), 0.92-log for TC (t(16) = 4.95, p<0.0001), 0.52-log10 for E. coli (t(14) = 1.84, 
p=0.09) and 0.08-log10 for f-RNA bacteriophage (t(28) = 1.81, p=0.08). Homogenisation of the CAS mixed liquor 
gave 0.35–0.36-log10 increases for SRC spores (t(23) = 4.79, p<0.0001), E. coli (t(14) = 3.17, p=0.007) and f-
RNA phage (t(28) = 9.48, p<0.0001) and a 0.54-log10 increase for TC (t(15) = 3.03, p=0.008). Alternatively, the 
homogenisation process may not have been significantly aggressive enough in order to successfully detach 
the phage. 

 
Figure 7: Results from homogenisation of mixed liquor in the presence of a 1x Zwittergent showing 
significance *>0.05, **>0.01, ***>0.001 and ****>0.0001 

 

The higher release of SRC spores, E. coli and total coliforms measured following homogenisation of the AGS 
biomass suggests that the AGS exhibited an increased potential of adherence of microbial surrogates when 
compared to the CAS mixed liquor. This effect was greatest with SRC spores, with AGS displaying higher 
potential for the entrapment of spores, which may explain the superior LRV performance by AGS 
(Supplementary Table 2). These results indicate that higher partitioning of indicators into AGS biomass may 
occur, which may be a potential advantage of AGS. While the homogenisation technique used here is an 
accepted method to dislodge microorganisms bound to particulate material (Caron et al., 2007, Li et al., 2009), 
it is however unable to distinguish between microbial indicator organisms that are attached to the surface of 
AGS versus those that might be entrapped internally as the AGS develops. For the SRC spores, the possibility 
of internal entrapment is of interest and worthy of further investigation, given the ability of spores to withstand 
long periods of dormancy. While increased partitioning into the biomass is an advantage for secondary effluent 
disinfection, there is potential for the increased load to be impacting downstream sludge treatments including 
thickening, digestion and biosolids stabilisation/drying. Further work investigating the potential downstream 
impact of the increased pathogen removal has on sludge treatment and the role EPS plays on the (ir)reversible 
adsorption of key pathogen groups is required to better understand the public health performance of AGS 
systems.  

 

3.7 Higher Organisms 

As highlighted above, pathogen removal in activated sludge processes can be achieved through several 
pathways, including adsorption onto the biomass or predation by resident bacteriophages, protozoa or 
metazoa. The predatory role played by many of these organisms in attenuating activated sludge pathogens or 
their surrogates has been described by Curds and Fey (1969), Kim and Unno (1996), Ng et al. (1993b) and 
Seviour et al. (2010). Given the potentially important role of predation in pathogen inactivation and removal in 
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activated sludge systems, it was important to measure and compare abundances of higher organisms in CAS 
and AGS, which could help explain any differences in indicator organism LRV performance. In particular, we 
sought to understand the abundance of those known to graze on activated sludge bacteria (i.e. amoeba, 
flagellates and ciliates). 

Results showed that higher organism abundances remained stable throughout the course of the study, with 
no observable changes in the abundances of all amoeba, rotifers and Zooglea in samples from the pilot AGS 
and CAS and the full-scale CAS systems (Figure 8A). Dubber and Gray (2011) showed that higher organisms 
such as amoeba and ciliates abundances are not affected by periodic anoxic or anaerobic conditions, which 
is also supported by the findings of this study (Supplementary Figure 3) as such operational conditions which 
occur in both the AGS and CAS systems presented here and in other studies. Bray-Curtis analysis showed 
that there is no pronounced difference in higher organism diversity or abundance found within the AGS 
biomass when compared to both the CAS pilot and neighbouring full-scale SBR plant (Supplementary Figure 
4). Given this similarity, the potential role for predation in AGS and CAS is similar and is therefore unlikely to 
explain differences seen in indicator organism LRV performances between the two systems. 

In addition to the analysis of higher organisms, the presence and relative abundance of filamentous bacteria 
in the MLSS of AGS and CAS pilots and the full-scale SBR was investigated (Figure 8B). While filamentous 
bacteria may not play a direct role in the removal of microbial indicators via predation or adsorption, they do 
impact on biomass liquid separation performance and hence effluent water quality (Eikelboom and van 
Buijsen, 1993). For example, a healthy and balanced community of filamentous bacteria play an important role 
in floc formation and serve to catch and hold small particles during sludge settling, thereby yielding a lower 
turbidity effluent. Conversely, the proliferation of filaments will result in sludge bulking and elevated effluent 
solids. Given the relationship between effluent turbidity and effluent pathogen load, it was therefore necessary 
to consider differences in filamentous bacteria type and abundance between AGS and CAS. Figure 8b showed 
a reduction in filamentous bacteria Type 021N, Type 1851 and Beggiatoa abundance in AGS compared to 
CAS, however the diversity was similar. Data analysis using Bray-Curtis analysis found that the ecologies of 
filamentous bacteria in AGS and CAS samples were >70% similar (Supplementary Figure 4). The reduction in 
observable filamentous bacteria in the AGS biomass samples is consistent with previous research conducted 
by Tay et al. (2001) and van den Akker et al. (2015). This highlights the benefit of AGS limiting filamentous 
bacterial growth to facilitate superior sludge settling, however not to the extent that would be detrimental to the 
clarified effluent quality.  

 

 



104 

 

 
Figure 8: Comparative analysis for filamentous bacteria (A) higher organisms and (B) present in mixed 
liquor suspended solids collected from AGS and CAS pilot plants as well as full-scale CAS SBR. Mean 
abundances of organisms presented from samples (n = 3).  

 

3.8 Implications of AGS on secondary effluent quality and water reuse 

Secondary effluent samples were analysed for UVT (absorbance at 254 nm), turbidity and TSS (Table 4). TSS 
analysis showed that the concentration was not significantly different (t(39)=1.51; p=0.14) between the AGS 
and CAS pilots. The turbidity results showed that there was a decreased turbidity of the effluent samples 
collected from the AGS pilot (t(14)=0.77; p=0.46) compared to the CAS pilot.  Particle size profiling (Section 2.9) 
was completed on secondary effluent samples from both pilot reactors as well as the full-scale SBR in order 
to better understand the impacts of various un-retained biomass size fractions on the final effluent quality. 
Analysis was conducted on samples drawn from sampling location A (Figure 1) to represent the worst case 
scenario, as this location collected a greater fraction of washed out MLSS. Effluent particle size profiles (Figure 
9) showed a greater similarity between CAS operation (pilot and full-scale), with relatively more larger particles 
(≥100 µm) in the final effluent, while particles washed out of the matured AGS pilot showed a decreased 
abundance of particles at larger sizes (≥100 µm) and a decreased total suspended solids concentration (Table 
4). This indicates that while small supracolliodal (1–100 µm) particles are persistent in both biomass samples 
there was a divergence in profile around 30 μm with AGS having a reduction in the presence of larger material. 
In addition, there was a decreased abundance of the settleable material (>100 µm) and the large reduction in 
large (>150 µm) particles also suggests that the retained biomass was rapidly settling granular structures as 
the majority of washed out material is within the conventional activated sludge size spectrum.  This shows that 
AGS operation is unlikely to negatively impact the downstream tertiary treatment processes such as 
chlorination and UV disinfection which are highly sensitive to increases in suspended solids and turbidity 
(Chahal et al., 2016). Additionally the secondary effluent quality would not be negatively impacted during AGS 
start-up and mature operation. 



105 

 

  
Figure 9: Analysis of secondary effluent particle size distribution (0.37–460.27 µm) from pilot AGS and CAS 
reactors alongside full-scale CAS effluent. 

 

Table 4: Secondary effluent water quality data for AGS and CAS pilot reactors collected during the 113 days 
of operation (mean parameter data given ± 1 s.d.) 

UVT (absorbance at 254 nm) Turbidity (NTU) TSS (mg/L) 

AGS CAS AGS CAS AGS CAS 

0.3 ± 0.02 0.3 ± 0.04 4.2 ± 1.6 5.2 ± 2.6 48.3 ± 18.3 58.4 ± 21.5 

 

Results from microbial indicator monitoring have shown that AGS offers an increased capability to remove 
and/or retain SRC spores, E. coli and total coliforms. This increased removal performance has the potential to 
allow for a direct process saving through the reduction in the tertiary treatment requirements for water recycling 
applications. Nominally, as the largest increase in removal performance for AGS over CAS was identified in 
the SRC spores, the greatest saving would therefore be in the reduction of disinfection. Additionally, since it 
was shown that the transition to AGS operation did not significantly impact secondary effluent water quality, it 
is unlikely to require any additional treatment in terms of filtration and disinfection power/reactors.  

 

For wastewater recycling schemes, individual treatment barriers are typically conservatively accredited based 
on their validated 5th percentile LRV as a worst case performance indicator. This research has shown that for 
AGS operation, improvements in microbial LRV capacity are likely to translate into treatment operations and 
capital savings for downstream disinfection processes, while still meeting regulated recycled water quality 
guidelines (such as health-based targets). Increase in LRV by applying AGS may suggest that tertiary UV or 
chlorine doses could be reduced, or depending on the end-use, additional tertiary treatment or onsite exposure 
controls may not be required. Results also showed that immature AGS had no detrimental impact on LRV 
performance when compared to CAS performance, which provides confidence that there are no adverse 
impacts on exceeded health-based targets during start-up which involves active washout of poor settling 
biomass. 

 

4. Conclusion 

The application and performance of AGS has been widely investigated for many types of sewage and various 
performance characteristics; however, to date no reports of AGS pathogen removal performance exist. This 
study showed that microbial indicator LRV performance of AGS was equivalent to CAS for bacteria and viruses 
and significantly better for SRC spores (protozoan pathogen surrogate). Treated effluent water quality was 
also maintained during the pilot start-up phase for CAS to AGS conversion, suggesting that adverse impacts 
on downstream disinfection processes are unlikely to be experienced. This shows that AGS is capable of 
meeting CAS-equivalent health-based targets for pathogen removal.  
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During AGS start-up (0–74 days) there was more variability in LRV performance for all indicator organisms, 
owing to the washout of biomass and higher TSS in the effluent; nevertheless, LRV values were still higher 
than that recorded in the CAS systems which suggest that start-up of AGS is unlikely to pose an unacceptable 
level of risk of pathogen breakthrough and performance challenge to downstream disinfection and water 
recycling operations. Monte Carlo simulation also showed a lower variation in indicator removal performance 
for the mature AGS when compared to the CAS pilot.  
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