RP2005

URBAN MICROCLIMATES

COMPARATIVE STUDY OF MAJOR CONTRIBUTORS TO THE UHI EFFECT IN SYDNEY, ADELAIDE AND MELBOURNE

Research Questions

- How can BUILDING FACADES be designed to mitigate URBAN HEAT and improve OUTDOOR THERMAL COMFORT?
- What KNOWLEDGE will assist built environment professionals to design cooler facades and more comfortable, healthier outdoor spaces?

Figure 1: Case-study sites in metropolitan Sydney

34 Rothschild Ave. Rosebery

356 George St, Waterloo

MethodologyIn-situ meter

- In-situ meteorological data collection
- Terrestrial thermal and multispectral remote sensing
- Facade modelling and image processing
- Outdoor thermal comfort assessment
- Analysis on a Geographic Information System (GIS) platform.

Figure 2: Methodological framework

- Map data to develop a predictive STATISTICAL MODEL
- Account for intervening variables such as aspect ratio and sky view factor using spatial data from cadastre and LiDAR databases.

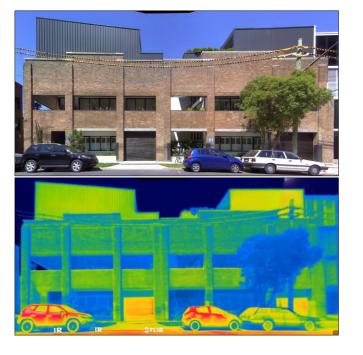

Figure 3: In-situ data collection

Figure 4: Hillshade and building footprint extraction from LiDAR data

Figure 5: Orthomosaics of building facades

Anticipated impacts

For ARCHITECTS to adopt microclimatic design principles they require diagnostic **tools** and predictive information about the microclimate effects of building design at spatial scales relevant to their decision-making.

This research advances the key challenge for CLIMATE-SENSITIVE DESIGN at all scales:

 linking physical characteristics of urban elements to intentional climate modification

The predictive model will quantify the impact of individual design decisions on outdoor climate and thermal comfort variables

Further information

Contact

Name: Jonathan **FOX**Organisation: UNSW FBE
e: jonathan.fox@unsw.edu.au

