
Energy, Transport, Waste and Water Demand 
Forecasting and Scenario Planning for 
Precincts. 
Workshop 2 - Establishing a framework for 
integrated ETWW demand forecasting 

Energy, Transport, Waste and Water Demand 
Forecasting and Scenario Planning for Precincts.

Workshop 2 - Establishing a framework for 
integrated ETWW demand forecasting



Authors Dr. Nicholas Holyoak 

Title Energy, Transport, Waste and Water (ETWW) Demand Forecasting and Scenario Planning 
for Precincts - Workshop 2 - Establishing a framework for integrated ETWW demand 
forecasting 

ISBN 

Format 

Keywords Demand Forecasting, Energy, Transport, Water, Waste, Modelling 

Editor 

Publisher 

Series 

ISSN 

Preferred citation 

1 



Acknowledgements 
The development of this report is based on contributions from all participants of the second workshop for the Low Carbon 
Living CRC's Research Project RP2002 on ETWW demand forecasting and scenario planning for precincts project, and 
in particular those who developed papers, presented and participated in discussions.  

Workshop Participants 

Prof. Michael Taylor 

Mr John Devlin - UniSA 

Dr Adam Berry - CSIRO 

Mr Atiq Zaman - UniSA 

Mr He He - UniSA 

Ms Michelle Philip - UniSA 

A/Prof Tommy Wiedmann - UNSW 

Ms Kate Beatty – Sydney Water 

Dr Rocco Zito - UniSA 

Mr Ivan Iankov - UniSA 

Ms Olessya Vitkovskaya  - DEWNR 

Mr Jason Ting - DPTI 

Mr Fernando Gamboa – Sydney Water 

Mr Steve Kotz – SA Water  

Dr Nicholas Holyoak - UniSA 

The project workshop on 'Establishing a Framework for Integrated ETWW Demand Forecasting’ was held at The 
University of South Australia's City East Campus on 24th September 2013 from 10:00-16:00. 

2 



Contents 
Acknowledgements ............................................................................................................................................................. 2 

Workshop Participants ................................................................................................................................................... 2 
Contents .............................................................................................................................................................................. 3 
List of Figures ...................................................................................................................................................................... 4 
Introduction ......................................................................................................................................................................... 5 
Dr Adam Berry: Energy Demand Forecasting ..................................................................................................................... 6 

Data Sets ....................................................................................................................................................................... 6 
Modelling and Simulation............................................................................................................................................... 6 
Residential Technology Trends ..................................................................................................................................... 7 
A Possible Path Forward ............................................................................................................................................... 7 
Discussion on Energy Demand Forecasting .................................................................................................................. 8 

Dr Nicholas Holyoak: Transportation Demand Forecasting................................................................................................. 9 
Establishing Model Inputs .............................................................................................................................................. 9 
Macro-Level Forecast Stages ........................................................................................................................................ 9 
Altenative Approachesand Other Considerations ........................................................................................................ 10 
Discussion ................................................................................................................................................................... 10 

Professor Michael Taylor: Estimating Precinct Level Carbon Emissions from Transport .................................................. 11 
Discussion ................................................................................................................................................................... 11 

Associate Professor Tommy Wiedmann: Review of Water Demand Forecasting ............................................................. 12 
Types of urban water demand forecasting methods .................................................................................................... 12 
Water modelling at a precinct level .............................................................................................................................. 12 
Conclusions ................................................................................................................................................................. 13 

Mr Fernando Gamboa: Water Demand Forecasting in Practice ........................................................................................ 14 
Discussion ................................................................................................................................................................... 15 

Mr John Devlin: Waste Demand Forecasting .................................................................................................................... 16 
Discussion ................................................................................................................................................................... 16 

Associate Professor Tommy Wiedmann: Economy-Wide Carbon Accounting .................................................................. 17 
All Workshop Participants:General Discussion Session .................................................................................................... 18 

Scenarios..................................................................................................................................................................... 18 
Model Framework Development .................................................................................................................................. 18 
Forecasting and Resolution ......................................................................................................................................... 18 
Data ............................................................................................................................................................................. 19 
Wastewater .................................................................................................................................................................. 19 

Conclusions and Synthesis ............................................................................................................................................... 20 
References ........................................................................................................................................................................ 21 

3 



List of Figures 
Figure 1: Residential appliance usage estimates for 2007 [Source: DEWHA (2008)]. ........................................................ 6 
Figure 2: Dependency map for the posited residential precinct energy model [Source: Berry and Percy (2013), Appendix 

A].................................................................................................................................................................................. 7 
Figure 3: Typical strategic modelling processes and data elements [Source Holyoak (2013), Appendix B]. ...................... 9 
Figure 4: Screen captures of Commuter software operation [Source: Azalient (2013)]. .................................................... 10 
Figure 5: Representation of a precinct as a connected set of buildings and facilities (which can be represented as ‘micro-

zones’) [Source: Taylor (2013), Appendix C]. ............................................................................................................ 11 
Figure 6: Software used for water demand forecasting [Source: Cooke (2013), Appendix D]........................................... 13 
Figure 7: Forecasting challenges – water demand between 2010 and 2012 [Source: Gamboa (2013), Appendix E 

(presentation)]. ........................................................................................................................................................... 14 
Figure 8: A conceptual model of zero-waste management chain for residential precinct [Source: Lehmann et al (2013), 

Appendix F]. ............................................................................................................................................................... 16 

4 



Introduction 
This project for the CRC for Low Carbon living is designed to develop a shared platform for integrated ETWW (energy, 
transport, waste and water) demand forecasting and scenario planning for ETWW under low carbon futures, focusing on 
gaps, synergies, alternative approaches and required research directions. It will include a series of facilitated national 
workshops on demand forecasting for ETWW utilities and services and on scenario generation and appraisal. The aim is 
to seek the development of integrated tools for demand forecasting and scenario evaluation covering ETWW with 
identified commonalities in data requirements and model formulation. It will first (Phase 1) develop an integrated 
framework for demand forecasting that will then be fully developed and implemented in Phase 2. A method for including 
the impacts of household behaviour change in demand forecasting will be a major component of the framework. In this 
way overall carbon impacts of urban developments or redevelopments can be assessed effectively and efficiently. 

The following report presents the outcomes of the second workshop held for this project held on Tuesday the 24th 
September 2013 at Room BJ3-03 at the University of South Australia’s City East Campus, Corner North Tce & Frome 
Rd, Adelaide from 10:00am until 4:30pm. The focus of this workshop is to follow on from the initial project workshop 
(CRC-LCL, 2013) and to address issues around and to establish a framework for integrated ETWW demand forecasting. 
This report discusses a collection of the of the presentations made and associated discussions during the workshop 
sessions with conclusions and a synthesis of these outcomes presented for the next stages of the research progress. 
For each of the presentations, the folowing summaries are based on notes are taken about the speaker's presentation 
and not made by the speaker directly. 
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Dr Adam Berry: Energy Demand Forecasting 
Forecasting precinct energy demand is a complex task as there are a lot of influencing factors. It is important to identify 
data sets, modelling approaches and tool sets available for precinct energy demand forecasting and associated 
elements. 

Data Sets 
Much of the data that exists to detail residential energy use, is aggregate in nature and often explores high-level trends 
such as monthly aggregate energy use. The CSIRO is collating data sets to develop more realistic models of energy 
consumption. Residential energy usage is heavily influenced by the use of appliances accounting for the largest single 
proportion at 31% and expected to increase (Figure 1).  

The Solar Cities program initiated by the Federal Government has allowed for a lot of data collection, which has occurred 
recently. Much of this data collection has occurred for the first time in Australia and illustrates the nature of peoples’ 
domestic power use. Another program that has facilitiated data collection is the Low Income Energy Efficiency program. 
This represents a data collection exercise based on less homes but may be relevant and useful in the development of 
the ETWW project as does the data associated with the Residential Building Energy Efficiency Standards Repository. 
Other data relevant to this research includes that based on distribution network construction which may be used to plug-
in to a precinct ETWW model to see what the distribution network will do.  

Figure 1: Residential appliance usage estimates for 2007 [Source: DEWHA (2008)].  

Note: Numerical values represent total peta-joules (PJ) per year of consumption by households and the percentage share of total 
energy consumption for the particular end-use. All values based on modelling. 

Demand management trials are happening across Australia and although important, most are specific and one-off. 
Greenhouse gas emissions data is useful for short-term forecasting but may not be so appropriate for application in this 
research when considering forecasting into the future. Part of the reason for this is that there is much debate due to 
instability around policy associated with this subject and hence short-term future forecasting more reliable when 
compared to the longer term. 

Modelling and Simulation 
The modelling of power flows that occur at the precinct level commonly represent AC type power flow. Modelling 
processes were easier to accomplish in the past witht he presence of uni-directional power flows and traditionally radial 
networks.  This is becoming more difficult with distributed generation and potentially bi-directional power flows. The 
Gridlab-D modelling platform exists as open source software that could potentially be applied in this project.  
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One technique for forecasting energy loads is neural 

One approach to forecasting of energy loads can be based on a neural networks, utilising historical data sets. An issue 
with this approach is whether historical data is necessarily a good predictor for future energy use. Incorporation of 
behavioural type inputs into the modelling process is facitlitated through this technique, however this becomes more 
difficult when developing longer term forecasts, especially 10 to 20 years into the future. The modelling of individual 
building energy use is possible from the ‘ground-up’ with the CSIRO developed Accurate software. For application in the 
context of this project, there may be a need to develop a set of representative households and use to ‘plug-in’ as 
appropriate. 

Residential Technology Trends 
Trends in residential technologies that will impact on energy demand forecasting include the uptake of solar PV and 
electric vehicles in Australia. CSIRO has developed diffusion methods for forecasting both solar and electric vehicle 
uptake based on a variety of demographic and technology inputs for granular (post-code level) projections.  These 
projections alone, however, will not be sufficient for fully assessing energy impact – for this, insight into specified 
charging regimens, PV penetration limits and generation ramp rate control efforts (amongst others) is required. 

A Possible Path Forward 
A possible path forward to establish an accurate and practical energy demand forecasting approach for this research will 
involve data and model fusion to provide representative load profiles, PV output, EV discharge/charge used to build 
household energy models combined with neural network characteristics to develop precinct energy models. One of the 
main dilemmas is that currently there is not much interaction with other domain forecasting approaches, these being for 
transport, water and waste. 

Figure 2: Dependency map for the posited residential precinct energy model [Source: Berry and Percy (2013), Appendix A].  

Note: Green shows inputs drawn from pre-existing data, tools or models. Blue shows outputs delivered through data, tool and model 
fusion. 
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Discussion on Energy Demand Forecasting 
In relation to the use of electrical appliances in the household, there has been an increase in demand over time and is 
forecast to increase into the future. This is likely to be the as the result of more appliances present on the household 
rather than increased use of existing appliances. The forecast is not likely to account for the presence of electric vehicles 
These conclusions would need to be confirmed as the presented data is not the result of CSIRO-based research. 

Mixed-use developments are experiencing promotion within and beyond Government policy and planning agencies. It is 
therefore essential that models account for the presence of mixed land uses and the inclusion of forecast scenarios that 
recognise this. The topic of mixed land uses should be recognised by all domains and scenario development will be 
required. In terms of energy demand forecasting, the models should account for mixed-use as forecasting for commercial 
buildings is more easily achieved when compared to residential. The Accu-rate modelling software can be applied to 
commercial land uses and more recent releases account for peoples 

Behavioural aspects are captured through the development and analysis of surveys and hardware such as smart meters 
and (more rarely) cognitive metering. Smart meters may not provide as good a picture as surveys as they include whole 
of house demand. Living laboratories that are in existence such as Lochiel Park in Adelaide should be made use of in 
this context.  
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Dr Nicholas Holyoak: Transportation Demand Forecasting 
Transportation demand forecasting is the estimation of present and future year transport behaviour patterns. Assisted by 
the use of software packages, it is influenced by socio-demographics, land uses and nature of transport network supply. 
Scales with increasing model resolution range from those with inclusions of National networks and operations to 
macroscopic models which include a whole metropolitan region, to micro and nano-scopic scale simulation which may 
include a small collection of intersections and person-based door-to-door travel.  

Establishing Model Inputs 
There are a number of essential stages for the forecasting of transport demands which are all well researched and are 
successfully applied in practice internationally and around Australia, mainly at the macro-scale, offering a weath of travel 
behaviour data available for inclusion inthe ETWW modelling process.  

Prior to modelling activity, a Traffic Activity Zoning (TAZ) regime is applied to the study area to allow for the 
representation of land uses and demand distribution. Model inputs are based on the TAZ definition with data for each 
TAZ regarding land uses and household level socio-demographics. Transport networks with operational attributes 
including road, public transport, intersections, as well as other possible inputs such as freight-related demands. 
Examples of modelling output include travel demands disaggregate by trip purpose, household type, car ownership, time 
of day, mode, etc. and network travel patterns. 

Macro-Level Forecast Stages 
Once this has been established, first of these modelling stages (Figure 3) involves an application of land –use modelling 
where the key land use decision of individuals is ‘where to locate homes or enterprises?’. Their decisions translate into 
travel and communications activity, affecting congestion and hence accessibility. Following on from this, the trip 
generation stage seeks to address the concern of the individual traveller’s decision of ‘shall I travel?’. Within the 
modelling framework, this stage establishes the total number journeys produced from and attracted to each TAZ, 
disaggregated by classifications  such as purpose, time of day and traveller type. Next the trip distribution stage focuses 
on the decision of ‘where shall I travel to?’. Application of models such as the gravity model results in a matrix of travel 
demand form origins to destinations.   

Figure 3: Typical strategic modelling processes and data elements [Source Holyoak (2013), Appendix B]. 

Mode choice follows on from this where the decision is ‘how shall I travel?’. The traveller’s discrete choice on which 
mode to select commonly uses a logit model. In this approach, it is possible to incorporate mode and person- specific 
variables with the development of a utility functions. The trip timing stage can also be addressed using a discrete choice 
model, where the decision is ‘when shall I travel?’. The final stage, before an iteration of all stages is performed is the 
assignment where the decision is ‘which route shall I take?’. Here network supply and travel demands are matched and 
the focus is on private vehicles (including freight). It is conducted using an optimization process that considers traffic 
conditions and congestion. 
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Altenative Approachesand Other Considerations 
One alternative to the modelling approach depicted in Figure 3 is activity-based modelling which is a more detailed 
modelling approach that can recognise complex interactions, including those at the household and related to travel. 
Greater effort required to accurately calibrate such models that operate at a finer data resolution. These models often 
have a heavy reliance on discrete choice modelling. 

For the purpose of representing travel demands at a precinct level, the Commuter software (www.azalient.com) is being 
researched by the transportation group. It is a nanosimulation modelling software, offering greater modelling detail than 
typical micro scale models including representations of door-to-door trips made by people.  

Figure 4: Screen captures of Commuter software operation [Source: Azalient (2013)]. 

Other considerations for transportation forecasting in the context of this research and ETWW demand modelling includes 
the estimation of carbon impacts, data management and the use of GIS, inclusion of behaviour change, precinct 
definition and transport interactions with energy, waste and water. 

Discussion 
In the context of the ETWW project’s need to represent precinct-level demand forecasts, the macro-scale models will be 
applicable with the potential for other inclusions, including micro-scale demand representations. Macro models are well 
developed and present for most of Australia’s capital cities and so will provide a useful resource to draw on for this 
project. Data sources developed at the ABS Census ‘mesh-block’ zoning scale may be useful for inclusion in the 
transport (and other) demand forecasting tasks, however the zoning systems applicable to precinct-level demands (ie. 
TAZ) will likely be larger that these zones.  

Meso-scale models that have recently received much attention in the transport modelling domain may be useful for 
inclusion in the forecasting task but as they are relatively new to the domain, their application will be limited due to the 
need for them to be more fully developed and refined. This is especially the case for precincts that exist in Australian 
capital cities. 

The summary of Prof. Michael Taylor's presentation that follows provides more detail on some of the issues raised in this 
discussion. 
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Professor Michael Taylor: Estimating Precinct Level Carbon Emissions from 
Transport 
Carbon performance is a key consideration in precinct analysis and there is a need to estimate carbon emissions at this 
geographical scale. In terms of transport, the precinct is source of emissions that may occur across a much wider region. 
Travel demand models can provide basis for the estimates, but require readjustment. A definition of the precinct has 
been developed by Newton et al (2013) as the following: 

‘a precinct can be represented an urban area of variable size that is considered holistically as a single entity for specific 
analyses or planning purposes, as well as in a contextual sense to represent the interactions that occur with elements of 
the surrounding urban area. It typically comprises land parcels occupied by constructed facilities (generally buildings), 
including open space, and often clustered in to urban zones that share some common characteristics (uses) and 
supported by physical infrastructure services to manage energy, water, waste, communication and transport as well as a 
range of social infrastructures related to health care, education, safety, retailing and entertainment’ 

In the context of this project, the precinct may be considered as a Traffic Activity Zone (TAZ) which are typically based 
on the Australian Bureau of Statistics definition of a Census Collection District or CCD. Therefore if we can assume that 
we would know CCD socio-demographic and population type information for a precinct within a TAZ.  

Figure 5: Representation of a precinct as a connected set of buildings and facilities (which can be represented as ‘micro-zones’) 
[Source: Taylor (2013), Appendix C]. 

Regional travel demands can be represented by the transport modelling forecasts of Origin-Destination (O-D) matrices 
with additional descriptive data as travel cost matrices. Precinct travel demand may included in the regional O-D matrix, 
with rows representing travel originating in precinct and columns representing travel finishing in the precinct. It is also 
important to beware of double-counting intra-precinct demand in this context. The total travel cost of precinct-generated 
travel can be estimated, enabling estimation of fuel and emissions performance. Intra-precinct travel demand can utilise 
a micro or nano-level replication of regional analysis which would use different mathematical/computer models with the 
household as basic unit of analysis. 

Precinct-level analysis can be performed using existing methods with modification. The outstanding issue is elastic travel 
demand and behaviour change. 

Discussion 
It is possible to represent the presence of transport infrastructure (such as light rail) within the precinct. This will be 
captured with the use of a modelling routine such as the mode choice model which can be applied within a macro-scale 
model. The results of such an application will be evident in the trip matrices that result and hence be recognised in the 
precinct. 
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Associate Professor Tommy Wiedmann: Review of Water Demand Forecasting 
One of the main factors influencing water demand in urban areas is human behaviour and there have been attempts to 
simulate this in a modelling environment. It is important to note that behaviour associated with water demand can be 
influenced, as witnessed in demand changes associated with drought restrictions. Education can be a cost effective 
approach for influencing behaviour and reducing demand. End use surveys and measurement studies have been 
conducted in a number of locations around the world and provide some indication of the influence of behaviour on water 
demand. 

Demographics and planning policies also have a significant influence on water demand. Total water demand is largely 
driven by population growth but because planning policies can influence both the density and water use efficiency of 
precincts, the influence of population growth can be somewhat balanced by policies that encourage efficiency.  

Water source substitution (such as rainwater tanks, greywater and dual reticulation systems) will have an influence on 
future water supply infrastructure needs at both infill and brownfield sites. Efficient planning of infrastructure needs to 
consider the ability to adapt to future changes such as potential increases in decentralised alternative supply sources. 
Typically infrastructure planning is not well integrated with the regulation of the water industry relating to pricing and 
environmental licensing. There is a potential for future legislative change to better support more efficient infrastructure 
planning. 

Types of urban water demand forecasting methods 
In the temporal domains there are 2 broad approaches to forecasting urban water demands, these being ‘top-down’ and 
‘bottom-up’. The complexity of the approach is based on the forecasting requirements and time series analysis can be 
long, short or cyclical with most approaches based on the short-term. In terms of long-term approaches, multivariate 
regression analysis is often utilised including independent variables such as climate (rainfall, evaporation, temperature) 
and population etc. Other approaches include computational intelligence methods, eg. neural networks and agent based 
approaches, however these are not widely applied in this area. System dynamics has also been used and Monte-Carlo 
simulation has been applied by some water utilities to quantify uncertainty. 

Water modelling at a precinct level 
Regression and time series are usually applied at a city or region wide scale. The effectiveness of AAN is mixed and it is 
important to quantify uncertainty. Polebitski and Palmer (2010) have developed a paper reporting on forecasting water 
demand for Census tracts. This is a particularly important publication as it is details a water demand forecasting 
approach that is relevant to this research.  

The survey of water providers conducted by the research team indicates that most providers use a top-down forecasting 
approach, most use macro-scale models and prefer simpler models. Quantifying uncertainty and modelling behaviour 
change is important. In terms of the precinct the most concern is about infrastructure. Software used (Figure 6) includes 
Innovyse (Sydney), SimulAlt (Melbourne), IWR-MAN, DSS (California) and ForecastPro. 
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Figure 6: Software used for water demand forecasting [Source: Cooke (2013), Appendix D]. 

Conclusions 
Conclusions are that for precinct infrastructure sizing the peak-day forecast is of greatest importance. The methodology 
described in the Polebitski and Palmer paper provides an approach with good potential for this research although carbon 
outcomes and some model for human behaviour would still need to be integrated. 

Innovyze (formerly Wallingford Software) 
• Demand Watch - for urban water demand forecasting. Uses historical demand data, time series autoregression & 

Fourier Trans for short-term water demand forecasts 
• Adaptive demand forecasting updated in real-time
• Included in a suite of software for hydrology: InfoWater, InfoWorks WS, InfoWorks CS, InfoWorks SD, InofWorks RS,

FloodWorks
• http://www.innovyze.com/

SimulAlt Water Forecasting & Barwon Model Configuration (intelligent software) 
• Does NOT rely on historical data.
• Micro-Simulation model includes; agent based modelling, micro-economics, cognitive reasoning
• Bottom up approach
• Includes human behaviour / consumer model
• Allows for senario testing 
• http://www.isdanalytics.com 

IWR-MAIN 
• Sectorial forecast software based on US historial data.
• Used by Metropolitain Water District of Southern California (Billings & Jones, 2008, p. 33)
• Provides water demand forecasts disaggregated by sector & time periods 
• Can be used to test differnt senarios
• Designed by US Dept of Energy 
• http://apps1.eere.energy.gov/buildings/tools_directory/software.cfm/ID=74/pagename=alpha_list

Decision Support System (DSS) Model 
• Least cost planning demand management decision support system 
• Top  down & bottom up to calibrate end-use models
• Developed by Maddaus Water Management California
• Microsoft Excel Based Software  (Billings & Jones, 2008, p. 33)
• Long-term forecasts can be developed for 10 to 30 years 

Forecast Pro 
• Generic forecasting software used in many areas of business 
• Statistical basis, uses various methodologies, inlcuding; Expert selection, Exponential smoothing, Box-Jenkins,

Dynamic regression, Event models, Multiple level models, seasonal simplification.
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Mr Fernando Gamboa: Water Demand Forecasting in Practice 
Practitioners planning and sizing infrastructure needs for precincts have generally gained a better result using ‘top-down’ 
water demand forecasts than ‘bottom up’ approaches. General sources of data used as inputs to the forecasting process 
in Sydney include population and dwelling forecasts from NSW Department of Planning and Infrastructure (DoPI), 
historical consumption trends, census data and development applications. For Sydney, the top-down demand forecasting 
process currently involves analysing and deriving demand rates for each lot allowing for the relative efficiency in water 
use due to the DoPI’s Building Sustainability Index (BASIX) requirement for new housing. For greenfield locations, these 
rates are informed by similar development in adjacent areas, for infill, these rates will already be known for existing 
housing within the zone. Hydraulic modelling is then used to determine infrastructure needs including a sensitivity 
assessment and risk profile.  

Generally the forecast maximum hour demand is required for infrastructure sizing however, the smaller the zone size, 
the higher the temporal resolution required and this can be up to the peak minute. Challenges for forecasting have been 
the shift in demand during restrictions, the drop in peak day demand in recent years and the changes in when the peak 
occurs during the day (previously was afternoon, currently it occurs in the morning). 

Figure 7: Forecasting challenges – water demand between 2010 and 2012 [Source: Gamboa (2013), Appendix E (presentation)]. 

The Water Servicing Association of Australia (WSAA) outlines six planning phases for water and wastewater services: 

1. define objectives
2. generate options
3. select sustainability criteria
4. screen options
5. perform detailed options assessment
6. recommend preferred option.

There area number of comonly used water demand forecasting and planning tools that help to facilitate these phases. 
Tools currently in use in Sydney include the energy and carbon estimator which estimates the life-cycle greenhouse gas 
emissions and energy costs for water and wastewater assets. Construction and operating costing tools include a capital 
costing tool and economic options evaluation tool. In practice given time, cost and quality contraints, simpler forecasting 
tools are better. Hydraulic modelling tools provide Sydney Water with a hydraulic model and map. 

Areas for future focus will be to continue to refresh the planning process, monitor consumption, improve understanding of 
dynamic changes in water use behaviour and focus on parameters that have the biggest impact on consumption and on 
forecast uncertainty. 
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Discussion 
The presence of water saving technology within the home (such as water-saving toilets, showers and washing machines) 
over the past 20 or so years has had a large impact on average day residential demand. Twenty years ago, these three 
highest water using appliances in the home were around 50% less efficient and in next 15-20 years they are expected to 
get around 15% more efficient than today. The drop in peak day and hour demand recently seen in Sydney is however 
largely behaviour related. People have made big changes to the way they use water outdoors on high demand days.  

The impact on rainwater tanks is that they have offer an alternative source of water but the use and effect of this on 
demand from the traditional reticulated system is limited. Rainwater tanks are only connected to certain uses and are 
unlikely to provide an alleviation of peak demands, in particular the annual peak-hours as they are highly likely to be 
empty at the time of year when this occurs in most situations. In terms of water supply cost, the largest component is the 
fixed component (ie. supply and sewerage charges), and therefore the payback period for the cost of a rainwater tank is 
very long or infinite (that is, involves a net cost to the household). 

The hydraulic models used to size infrastructure for precincts require both domestic and commercial demands to be 
forecast. Commercial demands are currently forecast using data from NSW Burea of Transport Statistics (BTS). 
Commercial demands have generally remained more stable and are usually a smaller component of total demand so do 
not pose as big an issue as residential. 
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Mr John Devlin: Waste Demand Forecasting 
Questions that arise for the waste demand forecasting task include ‘what is zero waste?’, ‘where do we measure waste?’ 
‘is waste avoidable?’ and ‘what about embedded waste?’. The average waste production for persons in Adelaide is 2.5kg 
per day, but what is used to estimate this figure and is this value useful? Defining waste by its weight is useful, but only 
to a certain degree for relevance to our ETWW project. With embedded waste, little changes in supply changes can have 
a significant influence.  

Detailed classifications of waste types exist and the waste stream can be expressed as a hierarchy such as: avoid – 
reduce – reuse – recycle – recover – treat – collect – discard – pollute. Dr D. Halperin provides a definition of waste as 
‘waste is... the absence of value’ but waste definitions can be subjective and contextual. Zero waste in the waste stream 
hierarchy, is to aim for ‘avoid’, ‘reduce’ and ‘reuse’ but it is important to note that there can be great differences between 
hierarchy levels, ie. reduce is 1000x better than recycle in terms of waste reduction 

Figure 8: A conceptual model of zero-waste management chain for residential precinct [Source: Qian et al (2013)]. 

Approximately 70% diversion of waste from landfill in 2012 for SA but this figure can be misleading as questions can be 
raised about its accuracy and even its meaning. Is there a demand for waste? Professor S. Lehmann provides a 
definition for waste that ‘waste is ... a misallocated resource’. Waste can be a combination of many resources such as 
time, material, effort, energy, space and capital, and so for this project it may be more appropriate to define the ‘waste’ 
component as a ‘material ‘ component, changing our ETWW project to an ETWM (Material) project. 

Resource demand is dependent upon design and behaviour and so barriers to long-term forecasting can be associated 
with mobility, the existence of borders and off shoring, timeframes, innovation, and value. Different ways can we use a 
waste demand forecasting tool can be as for tasks associated with prediction, exploration, prevention, speculation and 
for back-casting. Zero waste is a moving target which is influenced by real-time data, feedback investment strategies, 
governance, adaptation and innovation. In this context it may be better suited to perform waste demand forecasting for 
short-term time horizons. 

Discussion 
No one tool for the forecasting of waste demand has been developed as yet however regression and other methods can 
be drawn on for the waste demand forecasting tasks. It is not certain if the scope of the forecasting task is not only focus 
on waste but also the resource that it potentially provides. Uncertainty is also associated with the tracking the full life 
cycle and associated waste productions? Precinct waste production should be looked at from an activity perspective 
rather than just a categorisation of different waste types. 

It is expected that difficulties may also be associated with forecast for recycling needs due to changing nature of waste 
and the influence of technology and time frames for forecasting. An example of this is the surge in waste televisions 
associated with recent advances in television technologies. 
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Associate Professor Tommy Wiedmann: Economy-Wide Carbon Accounting 
Top-down approach for carbon accounting which utilises a database has 1284 products and 1248 industries. This 
develops a matrix containing approximately 1.6 million ‘carbon cells’ representing the carbon inputs to industry and the 
carbon production of products. Different emission sources are identified and the descriptives contain 120 building 
material types. Model integration into Mutopia and UrbanSim. 
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All Workshop Participants:General Discussion Session 
In response to the presentations and to address the aims of the project, there is a need for the workshop participants to 
help in the development of workshop outcomes associated with: 

the development of a framework that may be used by or developed for use by other models,  
identify/discuss interactions, 
possibility of ABS data use, 
investigate behaviour and behaviour change – models use observed behaviour, so how do we accommodate 

behaviour change, 
possibility of using stereotypes households, 
inclusion of mixed land use developments and low carbon impacts – optimised 
accommodating technological change in our forecast horizons 
a report from this workshop and beyond 

The following sections summarise the discussions that were held (in addition to those generated from individual 
presentations) on these and other issues of relevance.  

Scenarios 
The development and testing of future forecasting scenarios is an important stage for a number of reasons, largely 
associated with the investigation of behaviour and behaviour change impacts. Policy makers need to know the result of 
behaviour changes and hence this can be a political issue. In this respect, it may be best to use model to identify the 
best scenario for low-carbon outcomes. In terms of behaviour change, should this project identify the key behavioural 
changes that could occur that would give the greatest ‘bang for buck’ across all domains? Once these are identified, their 
impact could be projected into future year scenarios and hence provide an empirical estimate for the policy maker. There 
is a need to consider the key variables, inputs logical combinations of assumptions that may be utilised to develop 
scenarios which would be dependant on the precinct under consideration. 

Developing this type of ‘best case’ scenario modelling would make pragmatic sense, but what then about other cases. 
Best/worst case scenarios are important, but cases that consider what is happening in between these extremes are also 
important. The question of how to identify a ‘best case’ scenario also arises which may depend on the work conducted 
and concluded from other CRC-LCL work packages. The CRC-LCL project on ‘Vision 2050’ will produce outcomes that 
should be useful to for scenario development, but whether this will occur in a timely manner to mesh with our project is 
not clear. The ETWW project research group definitely has some responsibility to generate its own scenarios, but can 
look to others in existence for our use.  

Model Framework Development 
A framework developed from this project should exist as a set of guidelines for model development in any precinct 
modelling tool. The scoping study on the “Performance Assessment of Urban Precinct Design” (Newton et al, 2013) 
contains and evaluation of precinct assessment tools, identifying some of these models. The models will need to 
differentiate between options, consider uncertainty and the integration between domains is essential to consider the 
equilibrium state between models. 

This project should provide information for and connect with other packages in the CRC program by ultimately providing 
a means to efficiently and in an integrated manner forecast ETWW demands. The ‘bigger picture’ objectives of the CRC-
LCL will need to be considered when developing this research. 

Forecasting and Resolution 
An appropriate level of resolution for modelling forecasts is an important consideration to provide results that are useful 
to the project team and also to the industry partner organisations that will be using the model in practice. Determining 
industry wants and needs for this model dimension is relevant. Consideration should also be given to available precinct-
level descriptive datasets that will be utilised in the modelling routines when considering operational resolution. 

This characteristic of the ETWW model should also be influenced by the common levels of resolution in use and it may 
be necessary to come up with a few levels of data resolution that would be used across the ETWW fields. Operation may 
depend on the data resolution needed in each of the fields to model human behaviour.  

18 



 

 

Data 
In terms of data collection, this project does not have the scope or resources to collect new datasets, beyond those 
which may be collected as part of the PhD research. Rather the emphasis will be on the identification and collation of 
existing data that is appropriate for use in the model development, tapping into CRC data resources. Data should be able 
to identify components of behaviour with the mindset of the persons being important, especially in relation to behavioural 
aspects. 
 
Discovering the categories and common elements that influence the four domain demands will help to discover the data, 
scale and resolution required and express the precinct development and scenario developments. Identifying these 
should therefore be an action for the group.  
 
Common-ground across the domains should be realised by the datasets with the possibility of ‘stereotyped’ household 
definitions as a way of determining common ground for ETWW domains. 
Common elements are important for such a household definition structure with elements such as income being an 
important factor for household transport and water and possibly others. How such characteristics change through time is 
important especially in relation to household/family changes. 
 
What type of data is currently being used by the domains for demand forecasting? Are ABS, and Mosaic datasets used? 
Mosaic data is very detailed socio-economic profiles used by business and has been used for research. Mix of real 
surveys and imputation is very useful. 
 
From a transport perspective ABS data is useful but moreso Household Travel Survey data reporting on a sample (1-2% 
of households) of very detailed household attributes and travel behaviour. 
 
In relation to waste-demand forecasting, data is available at the council-level with some additional one-off type datasets. 
The problem here is the level of resolution. Many waste forecasting models operate at a council-region scale, so is this 
useful for the household or precinct scale? From a water perspective, the data can exist but in many cases the data sets 
can be restricted eg. small sample sizes and self-selecting sample bias. 
 
Defining carbon production from waste generation processes including recycling has many influencing factors especially 
when considering the full life cycle. This project will need to decide on where to draw the line in terms of waste 
forecasting inclusions which depends on the overall purpose of the ETWW model. Waste forecasting framework may 
change depending on the project objectives. 

Wastewater 
Forecasting of precinct wastewater production is a topic which can belong to the domains of water or waste, and this 
needs to be clarified. Water recycling at the precinct scale depends on technologies in use and the nature of the scenario 
under scrutiny. Many of these issues associated with wastewater production are new issues, which provides policy and 
guideline barriers in itself and is an interesting challenge.  
 
SA Water is involved in integrated water research projects for which results are scalable and therefore applicable to a 
precinct. The Goyder research which would be appropriate for consideration in this research will be available by the end 
of next year. 
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Conclusions and Synthesis 
Within the energy domain, demand forecasting approaches exist, but there are questions over the incorporation of 
behavioural elements. Longer term forecasting may be problematic, especially with the impacts of new technolgies (ie. 
solar PV, electric vehciles) and potential policies associated with them. Relevant datasets such ad the Low Income 
Energy Efficiency program and Residential Building Energy Efficiency Standards Repository are established with some 
detailed sets with small geographic coverage. Thre is good potential to look to smart meters and living laboratories as a 
source of model development data. Robust modelling software platforms such as GridLAB-D and Accu-rate offer 
potential to handle the forecasting task. 

 
The transport domain has well established base forecasting approaches, based largely on household-level datasets. 
ABS data especially at the CCD level along with transport-specific surveys and existing maro-scale model outputs can 
offer significant data sources. A range of behaviour-inclusive forecasting approches with differeing resolutions can be 
applied through various software platforms with invstigations into nano-scle softare such as Commuter underway. TAZ 
definitions offer a useful approach to precinctscale forecasting with approches now suggested for this process. 
 
Top-down forcasting approaches are preferred for the water domain, based on population and demographic datasets. 
Forecasting methodology similar to that suggested by Polebitski and Palmer (2010) based on census tracts is suggested 
and a range of software packages are available. Representing behaviour changes pose a challenge for water demand 
forecasting particularly as it has been proven that water-usage behavoiurs are elastic and can be influenced.  
 
Modelling approaches for the waste domain are not well developed, with the need to consider the scope for inclusions 
and the degree to which waste is considered as a resource. Limitations on datasets for base forecasting and software 
pose challenges for the waste production forecasting task along with long-term policy and technology uncertainties. 
 
The need to integrate forecasting tasks for the domains introduces a range of challenges for the successful development 
of a modelling framework. This is emphasised by the differing nature and maturity of the forecasting approached 
described herein. All domains should consider potential interaction opportuntities within their respective model 
frameworks and seek a cohesive integration approach. Utilising data through a format of 'representative' or 'steroetyped' 
housholds and land uses may offer one approach to successful scenario development. Scenarios should consider time 
frames with the consideration that short-term forecasting of behaviour change will provide results with greater confidence 
when compared to longer term. The forecast resolution should be guided by the available data used in describing the 
precinct and in particular the nature and behaviour of the precinct in relation to household behaviour, adoption of 
techologies and land use mixes. In these cases, industry can offer guidance in terms of what is expected from the 
forecasting routines and potential policy inclusions. 
 
Other data-handling opportunities exist with the application of GIS-based software that can represent inputs such as 
ABSdata, Mosaic data, domain-specific spatial land-use/sociodemographic data, networks for transport, electricity, water 
and waste infrastructure. In addition a GIS could offer a useful meand of representing carbon outcomes from demand 
and behaviour change. 
 
For each domain it is essentail to realise the impact of acitivity happening inside the precinct on what happens outside 
and vice wersa. The question of 'where to draw the line?' arises is present in all domains, especially highlighted for the 
waste domain regarding material lifecycle and embedded waste. It may be impossible to accurately account for complete 
carbon impacts based on the precinct forecasts however, limitations need to be noted. 
 

 
20 

 



 

References 
Azalient (2013), Azalient Software Website, Online URL: http://www.azalient.com 
 
Energy Efficient Strategies for DEWHA, “Energy Use in the Australian Residential Sector (1986 - 2020),” Department of 
Environment, Water, Heritage and Arts, 2008.  

 
Newton, P, Marchant, D, Mitchell, J, Plume, J , Seo, S and Roggema, R (2013), Design performance assessment of 
urban precincts from a carbon, sustainability and resilience perspective: a scoping study. Version 3.0 Exposure Draft, 
Research Project RP2001 ‘Scoping study for precinct design and assessment tools’, June 2013, Research Program 2, 
CRC for Low Carbon Living. http://www.lowcarbonlivingcrc.com.au/Assets/528/1/RP2001-
DraftNovember2013.pdf?download 
 
Polebitski, A. S., & Palmer, R. N. (2010), Seasonal Residential Water Demand Forecasting for Census Tracts. J. Water 
Resour. Plan. Manage.-ASCE, 136(1), 27-36. doi: 10.1061/(ASCE)WR.1943-5452.0000003 

Qian, Q.K., Lehmann, S., ZamanA.U. and Devlin, J. (2013) Framework for low carbon precinct design from a zero waste 
approach, 6th International Urban Design Conference. 

 

 

 
21 

 

http://www.azalient.com/
http://www.lowcarbonlivingcrc.com.au/Assets/528/1/RP2001-DraftNovember2013.pdf?download
http://www.lowcarbonlivingcrc.com.au/Assets/528/1/RP2001-DraftNovember2013.pdf?download


 

Appendix A 

 
1 

 



 

 ENERGY FLAGSHIP 
 

Energy Demand Forecasting   
Modelling, Simulation and Projection of Energy Technologies 
for Green Precincts 
 

Adam Berry and Steven Percy 
Draft only; not for distribution  

 
 

  

 
 



 

Copyright and disclaimer 
© 2013 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication 
covered by copyright may be reproduced or copied in any form or by any means except with the written 
permission of CSIRO. 

Important disclaimer 
CSIRO advises that the information contained in this publication comprises general statements based on 
scientific research. The reader is advised and needs to be aware that such information may be incomplete 
or unable to be used in any specific situation. No reliance or actions must therefore be made on that 
information without seeking prior expert professional, scientific and technical advice. To the extent 
permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for 
any consequences, including but not limited to all losses, damages, costs, expenses and any other 
compensation, arising directly or indirectly from using this publication (in part or in whole) and any 
information or material contained in it. 

 

 

 



 

Contents 

Part I Introduction 3 

1 Introduction .......................................................................................................................................... 4 

Part II Data Sets 5 

2 Residential Energy Use .......................................................................................................................... 6 

2.1 Solar Cities................................................................................................................................... 7 

2.2 Low Income Energy Efficiency Program ...................................................................................... 8 

2.3 Residential Building Energy Efficiency Standards Repository ..................................................... 8 

3 Distribution Network Construction ....................................................................................................... 9 

4 Renewable Energy Data ...................................................................................................................... 10 

5 Demand Management ........................................................................................................................ 11 

6 Greenhouse Gas Emissions Data ......................................................................................................... 12 

Part III Modelling and Simulation 14 

7 Modelling of Precinct Power Flows ..................................................................................................... 15 

8 Load Forecasting ................................................................................................................................. 15 

9 Modelling of Individual Buildings ........................................................................................................ 15 

Part IV Residential Technology Trends 17 

10 Solar PV Uptake Behaviour ................................................................................................................. 18 

11 Electric Vehicle Uptake Behaviour ...................................................................................................... 19 

Part V A Possible Path Forward 21 

12 Data and Model Fusion ....................................................................................................................... 22 
 

 

  

Energy Demand Forecasting  |  i 



 

Figures 
Figure 1.  Residential appliance usage estimates for 2007 (source: [1]) ............................................................ 6 

Figure 2.  Residential energy consumption trends and forecast (estimated; source: [1]) ................................. 7 

Figure 3.  Illustrative load profile from the Solar Cities store ............................................................................ 8 

Figure 4. Rooftop PV installed capacity forecast for NEM (source: [2]) ........................................................... 10 

Figure 5.  Greenhouse gas emissions factors for consumption of electricity purchased from the grid 
(source: [9]) ...................................................................................................................................................... 12 

Figure 6.  Projected Australian electricity generation mix under the CPRS-5 carbon price scenario 
(source: [11]) .................................................................................................................................................... 13 

Figure 7.  Forecast uptake of solar PV systems in NSW in 2018 (assumes small-scale technology 
certificates are maintained; source: [17]) ........................................................................................................ 18 

Figure 8. Projected daily charging load profiles per vehicle for Victoria (source: [19]) ................................... 19 

Figure 9. Spatially projected normalised peak load increase on hot summer day (base case uptake – 
Victoria; source: [19]) ....................................................................................................................................... 20 

Figure 10.  Dependency map for the posited residential precinct energy model ............................................ 23 

 

 

 

ii   |  Energy Demand Forecasting 



 

 

Part I Introduction 
Placing energy demand forecasting in context 
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1 Introduction 

Forecasting and analysing energy demand for a given residential precinct requires not just an 
understanding of the likely demand-side energy technologies that will be adopted by householders within 
that precinct, but also the likely behaviour of end-users with respect to that technology.  This is obviously a 
complex task.  The uptake of small-scale renewable technologies, the adoption and use of electric vehicles, 
the passive design of the home,  the timing of energy use, remote demand management interventions and 
the ultimate flow of power around the electrical network of the residential precinct are governed by end-
user attitudes, electricity tariffs, technology costs, convenience, government incentives, climatic conditions, 
central generation sources, network construction and the socio-economic status of residents (amongst 
many others).  This report looks to illuminate the data sources, modelling approaches and tool-sets 
available for capturing the key factors driving new energy technology uptake, understanding end-use 
behaviour, estimating greenhouse gas emissions and simulating the low-level characteristics of power 
moving around a precinct electrical network.  Effective collation, fusion and extension of these components 
and/or their outputs will ultimately form the heart of a unified tool for modelling, analysing and forecasting 
energy use in future residential green precincts.  Given that no equivalent tool exists in the public domain, 
this work represents an exciting opportunity to both extend science and produce a practical output that is 
of relevance to both industry and policy makers. 

It is worth noting that while this draft report provides a very light review of the nexus between transport 
and energy (emerging from electric vehicle uptake and usage), it does not touch upon the interaction that 
exists with water and waste streams.  It is expected that the September Energy Transport Water & Waste 
(ETWW) Workshop will begin to explore and articulate these interactions, with a view towards identifying 
optimal paths towards integration into a unified tool chain.  
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Part II Data Sets 
A review of data sets that will inform modelling of residential 
precincts 
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2 Residential Energy Use 

There has been a paucity of data regarding the energy usage behaviour of Australian residential customers.  
Though interesting studies, such as the Commonwealth Government’s analysis of residential energy use [1], 
endeavour to address this by exploring high-level trends (see Figure 1 and Figure 2), there has been little 
data available on what those trends mean for the fine-grained consumption behaviour of individual homes.  
In particular, conventional metering systems and billing methodologies have meant that where significant 
volumes of data are available, they seldom move beyond aggregate monthly energy use.  The impact is that 
such data fails to reveal the time-sensitive trends in residential energy use, obscuring the nature of daily 
load profiles.  Given the intermittent and time-bound behaviour of renewable generation systems and the 
growing import of high-peak loads (such as air-conditioning) to the design and operation of Australia’s 
electrical networks, a lack of insight into the hourly behaviour of residential customers severely limits the 
capacity to deliver meaningful models and simulations of residential precincts.  For effective green precinct 
design, the devil is in the details: it is the interaction between load and generation across a day (at 
customer and aggregate level) that really matters. 

At least partly in response to such issues, CSIRO has been actively collating data sets that begin to shed 
some light on the daily load profiles of Australian residential customers.  Taken together with more detailed 
modelling of specific housing stock (see Chapter 9) and forecasts on future energy use trends (see Chapter 
8), this data can be used to develop realistic models of energy use for customers living in future residential 
precincts. 

 

 

Figure 1.  Residential appliance usage estimates for 2007 (source: [1]) 

Numerical values represent total peta-joules (PJ) per year of consumption by households and the percentage share 
of total energy consumption for the particular end-use.  All values based on modelling.   
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Figure 2.  Residential energy consumption trends and forecast (estimated; source: [1]) 

2.1 Solar Cities 

The $94 million Australian Government Solar Cities programme to evaluate the effect of various energy 
efficiency measures, solar uptake and tariff models on residential energy consumption has recently come to 
a close.  Amongst the many outputs from the program is a rich data collection that includes anonymous 
half-hourly load data for residential participants.  CSIRO has reviewed, cleaned and collated this data into a 
store that contains load profiles for thousands of end-users across multiple years.  The data is often 
married to high-level demographic information, may capture solar PV performance (where installed) and 
often captures loading across circuits (which can be used to disaggregate loads into particular categories).  
The store is the largest collection of detailed residential load data that the authors are aware of and will an 
excellent base for producing load profile taxonomies that describe representative residential energy use 
behaviour for Australian households.  For precinct design, the availability of such load data will be essential 
for realistic estimation and simulation of residential developments.   

As an indication of the type of load data available within the Solar Cities store, Figure 3 shows a 
representative load curve based on half-hourly median load recordings taken across multiple sites.  
Methods for mitigating the peaks seen in such residential curves will be explored in Chapter 5.  
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Figure 3.  Illustrative load profile from the Solar Cities store 

The cyan region indicates the peak tariff period for homes in the corresponding data set. 

2.2 Low Income Energy Efficiency Program 

The Low Income Energy Efficiency Program (LIEEP) is, in many ways, the successor of the Solar Cities 
program of activities.  LIEEP focuses on the execution and assessment of trials targeting energy efficiency 
initiatives that are specifically designed for low income residential households.  Though the LIEEP trials are 
at a fledgling stage and little data has been collected, CSIRO is again engaged in the management and 
collation of anonymous residential load data sets.  In general, the data is expected to be less granular, 
though it will almost certainly include half-hourly load data for hundreds of homes, recorded across 
multiple years.  The data is expected to supplement existent load data for the ETWW project. 

2.3 Residential Building Energy Efficiency Standards Repository 

CSIRO’s Residential Building Energy Efficiency Standards (RBEES) repository houses energy use and 
temperature data for approximately 200 homes across Adelaide, Melbourne and Brisbane.  This data is 
fused with socio-demographic data and home energy rating evaluations (as-per the Building Code of 
Australia) to explore the real impact of building energy efficiency standards on actual energy consumption.  
Energy data for each home is measured at half-hourly intervals and captures per-circuit use (which can 
facilitate direct identification of air-conditioner use for some residential users).  Socio-demographic data is 
captured through surveying and provides insight into appliance types and use, building construction, 
energy use attitudes and customer type.  An anonymised for of this data set, together with the Solar Cities 
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and LIEEP sets, can be used to build-up a representative set of base energy use profiles for precinct 
modelling.  

3 Distribution Network Construction 

Though individual distribution network service providers are intimately aware of the construction and 
operation of their own electricity networks, competing proprietary software systems and models, concerns 
around privacy and security, and the complexity of the data itself has largely prevented collation and 
presentation of a nationally representative feeder set.  In response, working cooperatively with 11 
distribution network service providers from across Australia as part of the Smart Grid, Smart City 
programme, CSIRO and Ausgrid produced a succinct set of network models that effectively capture the 
diversity of Australia’s electricity distribution networks.  The representative set is formed through an 
iterative data mining process that identifies statistical trends and similarities present in a rich feeder data 
set, resulting in clusters of feeders that are similarly constructed.  These clusters reveal the fundamental 
characteristics of feeders deployed in Australia, from modern urban underground systems through to the 
remote single-wire earth-return networks of rural Australia (see Table 1, for a summary).  The resultant 
data set includes a collection of power-flow models and load profiles from which detailed assessments of 
network-level energy and voltage behaviour can be estimated for particular deployment and customer-mix 
scenarios.   

Table 1.  Representative distribution feeders extracted from National Feeder Taxonomy clusters 

Cluster Reliability 
Classification 

Voltage 
(kV) 

Description 

1 Long Rural 33 33kV remote area feeder 

2 Long Rural 11 11kV long rural with low SWER levels 

3 Long Rural 22 22kV long rural feeder with high SWER levels 

4 Short Rural 11 11kV short rural, moderate length, low load density 

5 Short Rural 22 22kV rural with low SWER 

6 Short Rural 33 Agricultural/small mining (agricultural loads such as irrigation pumps or 
dairies) 

7 Short Rural 11 11kV short rural, short length, low load density 

8 Short Rural 11 11kV suburban fringe feeder, principally residential 

9 Urban 22 22kV suburban fringe feeder, principally residential 

10 Urban 11 11kV medium density residential, majority overhead 

11 Urban 11 11kV medium density residential, majority underground 

12 Urban 22 22kV medium density residential 

13 Urban 22 22kV industrial 

14 Urban 11 11kV medium/high density residential, majority overhead 

15 Urban 11 11kV industrial 

16 Urban 11 11kV mixed industrial/commercial 

17 CBD 11 Brisbane CBD 

18 CBD 11 Sydney CBD 

19 CBD 11 Melbourne CBD 
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In the context of modelling and simulation appropriate to ETWW, the representative networks will allow 
planners to explore the impact of high-level precinct design practices on wider distribution network 
performance (including voltage rise, the operation of transformers and transmission line capacity).  This will 
be of particular import for planners looking to expand the integration of renewable energy into their 
precincts, where reverse power-flow and erratic aggregate load profiles are most likely. 

4 Renewable Energy Data 

The behaviour of distributed renewable energy technologies will obviously play an important part in the 
operation and design of residential precincts into the future.  Of particular note is the rapid growth and size 
of Australia’s rooftop PV sector, with estimated installed capacity rising from 23MW in 2008 to 
approximately 1.45GW by the end of February 2012 [2].  Even under moderate growth scenarios, the 
Australian Energy Market Operator anticipates that installed capacity will reach 5.1GW by 2020 and almost 
12GW by 2031 [2] (see Figure 4).  Moreover, recent reports suggest that there are now more than one 
million installed solar PV rooftop systems in Australia and that approximately 2.5 million Australians live in 
homes with solar panels installed [3].  Given both the prevalence and increasing uptake of PV, it is 
appropriate therefore to focus modelling and simulation efforts in this space.  Other renewable 
technologies (such as small-scale wind) and alternative distributed generation systems (such as fuel-cells, 
battery storage and micro-turbines) may be addressed in future work. 

 

Figure 4. Rooftop PV installed capacity forecast for NEM (source: [2]) 

 

There are numerous data resources available that describe various aspects of both solar irradiance 
behaviour and solar system performance.  The excellent PVWatts website 
(http://www.nrel.gov/rredc/pvwatts/) houses hourly performance estimates for PV systems deployed at 
multiple sites within Australia (and globally), based on irradiance data from a typical meteorological year 
and the high-level configuration of the particular PV system (including orientation, sizing and de-rating 
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factors).  Though the outputs provide an excellent first-cut insight into the behaviour of deployed solar 
systems and the impact of system configuration on performance, they lack insight into the short-term 
transient effects of intermittent clouding that may cause network stability issues for real-world precincts 
(see [4] for a discussion on the importance of short-term transients in solar power systems).    

Fine-grained (one-minute) solar irradiance and weather data has recently been made available by the 
Bureau of Meteorology (BOM) for multiple sites within Australia (see [5]).  This comprehensive data set 
captures multiple years of data and, as such, analysis of intra-hour irradiance variability may provide an 
appropriate avenue for translating from coarse outputs of the type seen in PV Watts to more meaningful 
(and statistically representative) per-minute solar power profiles suitable for detailed modelling and 
simulation.  

Data from deployed residential solar systems may provide interesting baselines against which the modelled 
solar performance can be compared and tuned.  To this end, anonymous real-world solar system output 
data collected as part of the CSIRO Virtual Power Station (VPS) project in Lake Macquarie [6] may be 
leveraged.  Though the set comprises only a small number of homes (fewer than 20), the data captures per-
minute output profiles across multiple months.  The Solar Cities database (see Section 2.1) also provides 
solar system performance data in the form of half-hourly measurements.  Though this data is more coarse 
than the VPS set, it examines performance in multiple Australian regions and includes anonymous data 
from hundreds of Australian homes.  Together, these sets could provide important analytic power for 
model validation. 

5 Demand Management  

Demand management as an approach to mitigating peaks has been gaining increasing traction in the 
Australian residential space.  At this stage, most of the work has taken place in the form of residential load 
control and critical peak pricing trials: 

• ETSA Utilities in South Australia conducted a collection of air-conditioner load-control trials with 
approximately 1,000 volunteers from 2006 until 2009; 

• The Adelaide Solar City programme of activities included a critical peak pricing trial with more than 
1,000 participants and up to 10 critical peak pricing events per year (designed principally to reduce 
load during particularly hot summer days); 

• Energy Australia is trialing a critical peak pricing scheme that charges households more than 12 
times the normal price of power for up to 14 critical pricing events per year (scheduled to run for 
two hours at a time and again targeting air-conditioner use on hot days);  

• Energex’s Cool Change programme, which has over 1,800 residential participants, has been trialling 
remote load control of air-conditioners, hot water systems and, more recently, pool pumps since 
2007; 

• Wester Power registered over 1,000 residents for the 2007 Cool Community Trial, which examined 
remotely controlled air-conditioners for peak management in Nedlands, Claremont and Dalkeith; 
and 

• Synergy’s Air-Conditioning Trial (ACT), which forms part of the Perth Solar City initiative, is a two 
year peak demand response programme that commenced in the summer of 2010 and ran until 
Spring 2011. 

Though outputs from such trials claim peak reductions of between 13% [7] and 35% [8] for remote-
operated air-conditioner control, there is generally a lack of high-quality data which provides insight into 
the impact of remote demand management on total energy consumption or end-user behaviour (though 
the Solar Cities programme touches upon these).  With the solidification of remote demand response 
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system standards (such as AS4755) and the continuing deployment of residential smart meters, however, it 
is expected that both the breadth and depth of knowledge in this area will grow.   

6 Greenhouse Gas Emissions Data 

To assess the impact of residential electricity consumption on greenhouse gas emissions, it is necessary to 
both model the source of electricity generation and the carbon intensity of those sources.  The National 
Greenhouse Accounts Factors [9] provide approximate emissions intensities for a variety of fuel types and 
provides state-based assessments of emissions factors for electricity purchased from the grid.  The 2013 
estimates are provided in Figure 5 and give a sense of how electricity imported into contemporary 
residential precincts is produced.  To enable forecasting of emissions intensities for future precincts, 
however, estimates of future centralised generation mix must be known.  This is an incredibly difficult task, 
complicated by changing carbon policies in Australia.  Still, multiple reports provide some measure of 
insight into the coarse electricity generation trends expected across the medium-term horizon.   

 

 

Figure 5.  Greenhouse gas emissions factors for consumption of electricity purchased from the grid (source: [9]) 

*WA refers to the South-West Interconnect System (SWIS) only. 

The Bureau of Resources and Energy Economics (BREE) project significant changes in the make-up of 
electricity generation by 2034-35 (their target horizon) [10].  Looking at changes from 2008-09, the share of 
coal-fired generation is projected to decline from 74% to 38%, the share of gas-fired generation is projected 
to increase from 16% to 36% and the renewable share is projected to grow from 7% to 24%.  CSIRO also 
anticipates sharp changes in both Australian and global electricity generation technology mixes [11], as 
shown in the example electricity generation technology mix projection provided in Figure 6.  Such 
projections may be used to provide indicative carbon intensities for energy consumed from the grid for 
future residential precincts. 
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Figure 6.  Projected Australian electricity generation mix under the CPRS-5 carbon price scenario (source: [11]) 

DG refers to distributed generation.   
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Part III Modelling and 
Simulation 

Methods to estimate the electrical behaviour of future residential 
precincts 
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7 Modelling of Precinct Power Flows 

The likely growth in uptake of distributed generation and storage technologies in residential precincts 
means that any detailed energy forecasting and analysis should include at least some measure of power 
flow modelling at the level of the low voltage network.  Detailed modelling here will identify voltage rise 
issues, line capacity problems and capture the power requirements of the precinct at points of connection 
to the distribution network.  These factors are fundamental to estimating the energy infrastructure costs 
borne by the precinct and to understanding how effectively distributed renewable systems will function in 
the context of the network (voltage rise, for instance, may lead to generation curtailment or inverter shut-
down for solar system inverters).  

Though there are a host of power flow simulation and modelling applications available (including 
PowerFactory, SINCAL and ASPEN), it is likely that energy modelling for the ETWW project will leverage the 
emerging GridLAB-D software environment (http://www.gridlabd.org/) developed by Pacific Northwest 
National Laboratories (PNNL) for the US Department of Energy.  GridLAB-D provides a robust modelling 
system, features a permissive open source licence and has been used extensively within Australia as part of 
the multi-million dollar Smart Grid, Smart City project.  Since the representative distribution networks 
captured in the National Feeder Taxonomy Study (see Chapter 3) are modelled in GridLAB-D, it will also 
accelerate modelling and testing of test precincts. 

8 Load Forecasting 

The time horizon for load forecasting is ultimately contingent upon its end-use.  Shorter forecasts, which 
focus on the near-term future from minutes to days, are relevant to systems control, economic dispatch 
and identification of peak load events.  Longer-term forecasts, which may look at load trends out to years in 
the future, are central to planning infrastructure investment decisions.  The number and extent of demand 
forecasting methodologies and models developed is large, however, and there exists no novel technique 
that can serve all situations [12]. The time frame of the forecast, data availability, the accuracy and cost of 
the forecast, the application and purpose of the forecast are some of the important parameters in the 
selection process.  

Traditional load forecast models use statistically based historical data such as seasonal temperature and 
day type. Examples of these models include Box–Jenkins autoregressive integrated moving average method 
[13][14], exponential smoothing by Fourier series transformation forecasting method [15], temperature 
forecast uncertainty on Bayesian load forecasting method . Newer techniques employ knowledge-based 
expert systems, artificial neural networks and support vector machines [12]. Despite relatively accurate 
predictions being produced by the Australian Energy Market Operator (AEMO) using such methods, the 
state-of-the-art in load forecasting do not integrate the complex aspects of social uptake of renewables, 
electric vehicle uptake, distribution network construction, demand management and intermittent 
generation in estimating precinct-level loading. 

9 Modelling of Individual Buildings 

If sufficient information about residence construction is known for a given precinct, reliance on de-facto 
load data (as-per Chapter 2) and trend forecasting (as-per Chapter 8) may be reduced by the application of 
detailed building energy modelling systems to generate realistic load profiles.  For instance, considering 
building construction materials, building orientation and local climate, the commercial AccuRate simulation 
engine develops realistic home-specific space heating and cooling loads based on occupant thermal 
comfort levels and available natural ventilation air flows.  Merging such outputs with detailed appliance 
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usage modelling, as-per the work of Ren [16], can produce detailed residential energy use models that are 
specific to home designs for a given residential precinct. 

Though powerful, the complexity and commercial nature of AccuRate limits the potential for direct 
integration into a unified Energy, Transport, Water and Waste tool.  Should such a bottom-up modelling 
approach be pursued for this project, the most likely avenue would be to use AccuRate or equivalent 
tooling to construct a collection of representative homes that align with trends seen in Australian 
residential precincts.  The outputs from these models, likely fused with the type of real-world data seen in 
Chapter 2, would define realistic base energy profiles that could easily be integrated into demand 
forecasting tools, so long as the general categories of housing stock are known in advance (such as 
approximate size, building materials, appliance types and occupancy).   
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Part IV Residential 
Technology Trends 

Methods and data for understanding consumer response to new and 
emerging technologies 
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10 Solar PV Uptake Behaviour 

A key component of longer-term energy modelling of residential precincts is forming an understanding of 
how on-site generation may be adopted or deployed by end-users over time.  Since distributed solar, in 
particular, may seriously affect the power quality of small-scale networks or impact the operation of up-
stream voltage regulation devices, estimating the uptake of solar systems over time is likely to be key to 
designing robust residential energy networks.   

To this end – and as discussed in Chapter 4 – the Australian Energy Market Operator (AEMO) has released a 
report discussing past and future rooftop solar PV uptake within Australia. The report notes that uptake 
rates for 2010 and 2011 were 28 MW and 74 MW per month respectively and that future economic 
payback is expected to improve strongly, with innovative financing reducing up-front payment costs. 

Still, while the AEMO report provides context for wider PV market conditions and suggests general trends in 
PV uptake, it is likely too coarse to provide sufficient insight for detailed residential precinct forecasting and 
modelling.  CSIRO provides a more granular analysis by forecasting uptake of solar PV and water heaters for 
household types across New South Wales [17].  The forecasting approach draws on multi-criteria analysis, 
diffusion models and a host of variables that likely influence proclivity to purchase solar technologies, from 
household income and projected savings in energy costs to dwelling density and the percentage of Greens 
voters in the region.  The resultant forecasts, validated against historical uptake data, provide detailed 
insight into how solar PV is likely to be adopted over time, how policy initiatives may affect uptake and in 
which specific post-codes that uptake is likely to be the strongest (see Figure 7 for an example).   

 

 

Figure 7.  Forecast uptake of solar PV systems in NSW in 2018 (assumes small-scale technology certificates are 
maintained; source: [17]) 
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11 Electric Vehicle Uptake Behaviour 

Electric vehicle (EV) uptake and use represents a nexus point between transport and energy behaviour in 
future green precincts.  EV driving patterns, recharge cycles and discharge algorithms will all have a 
fundamental impact on the shape and degree of residential load curves for many future Australian 
residences.   

EV uptake has been forecast by CSIRO for Victoria out to 2030, drawing on multi-criteria analysis, choice 
modelling and technology diffusion theory to capture how annual costs, purchase costs, household income, 
driving distances, demographic characteristics and vehicle performance (amongst other factors) will likely 
affect purchase of battery, plug-in and hybrid electric vehicles.  Reporting here underlines key drivers for 
electric vehicle uptake, the impact of rebate schemes and also underlines which regions (and thus, 
residential precincts) within Victoria are most likely to be impacted by charging schedules and attitudes 
[18].  Integration of these types of findings into future green precinct planning will be key for the accurate 
modelling of future residential energy use.   

With uptake models in place, CSIRO has fused multiple models and data streams to obtain spatial and 
temporal projections of the electrical load impacts of plug-in electric vehicles in Victoria.  The results, which 
are based on the existing EV uptake models, household travel trends, estimated residential load profiles 
and likely charging regimes (on-demand, off-peak and off-peak with discharge capacity), provide hourly 
charge/discharge estimates for fine-grained Census Collector Districts (equivalent to approximately 250 
homes) across a full year and for all of Victoria.  Figure 8 and Figure 9 provide an illustration of the findings 
seen in the corresponding report [19], highlighting both the types of charging profiles expected and the 
impact that charging regimes would have on regional peak load.  Noting the impact that electric vehicles 
will have at both the household and regional levels, it is clear that any future residential energy precinct 
model must carefully consider the type of charge/discharge curves that will be seen across households. 

 

 

Figure 8. Projected daily charging load profiles per vehicle for Victoria (source: [19]) 
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Figure 9. Spatially projected normalised peak load increase on hot summer day (base case uptake – Victoria; source: 
[19]) 
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Part V A Possible Path 
Forward 

Sketching how methods and data may be fused to provide a useful 
framework for green precinct energy forecasting, analysis and 
planning 
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12 Data and Model Fusion 

An effective energy forecasting and analysis tool for residential precincts will ultimately require the:  

• application of modelling packages to produce generic and representative residential load profiles 
based on typical Australian housing stock and climatic conditions; 

• fusion of the many existing disparate data sources discussed across this report to capture realistic 
residential energy behaviour, technology uptake trends and the CO2 cost of energy sources;  and 

• integration of existing open source tooling for high-performance power-flow simulation to estimate 
infrastructure requirements and stress points for residential precinct electricity networks. 

Figure 10 provides a brief summary of the likely key inputs and outputs required for the energy component 
of the ETWW demand forecasting tool.   

Note that though it is clear that transport behaviour will impact the use of electric vehicles and this must be 
effectively integrated into energy modelling, it is much less obvious how best to integrate water and waste 
streams.  Exploring this nexus will be a key next step in developing a unified energy tool.   

 
 
  

22   |  Energy Demand Forecasting 



 

  

Representative 
Load Profiles 

PV Output 

Charge/Discharge 
of EVs 

Network 
Characteristics 

Household Energy 
Models 

Residential Precinct 
Energy Model 

Real-world Load Data 

Bottom-up Residential 
Load Models 

Demand Management 
Options and Impact 

PV Performance Models 

Regional Climate 
Conditions 

PV Uptake Projections 
(based on region, where possible) 

EV Uptake Projections 
(based on region, where possible) 

Projected EV Usage 
Patterns 

Charging Regime to be 
Used 

Feeder Taxonomy 
Distribution Networks 

LV Network 
Construction  

GridLAB-D Power Flow 
Simulation Environment 

Figure 10.  Dependency map for the posited residential precinct energy model 

Green shows inputs drawn from pre-existing data, tools or models.  Blue shows outputs delivered through data, tool 
and model fusion. 

Greenhouse gas 
emissions catalogue 

Energy Demand Forecasting  |  23 



 

References 

 

[1]  Energy Efficient Strategies for DEWHA, “Energy Use in the Australian Residential Sector (1986 - 2020),” 
Department of Environment, Water, Heritage and Arts, 2008. 

[2]  Australian Electricity Market Operator (AEMO), “Rooftop PV Information Paper (National Electricity 
Forecasting),” 2012. 

[3]  T. Arup, “The Sydney Morning Herald: Solar Hits the Million Mark Despite Cuts to Incentives,” 5 April 
2013. [Online]. Available: http://www.smh.com.au/national/solar-hits-the-million-mark-despite-cuts-
to-incentives-20130404-2h9st.html. [Accessed 8 August 2013]. 

[4]  S. Sayeef, S. Heslop, D. Cornforth, T. Moore, S. Percy, J. Ward, A. Berry and D. Rowe, “Solar 
intermittency: Australia's clean energy challenge. Characterising the effect of high penetration solar 
intermittency on Australian electricity networks,” CSIRO, 2012. 

[5]  Bureau of Meteorology, “About One Minute Solar Data,” 29 August 2012. [Online]. [Accessed August 
2013]. 

[6]  CSIRO, “The Virtual Power Station,” [Online]. Available: http://www.virtualpowerstation.com.au. 
[Accessed August 2013]. 

[7]  Energex, “Time for a Cool Change,” November 2010. [Online]. Available: 
http://www.energex.com.au/__data/assets/pdf_file/0015/32352/Cool-Change-Cool-Change-
Newsletter-November-2010-with-form-number.pdf. [Accessed 10 January 2012]. 

[8]  Energex, “Cool Change FAQ,” [Online]. Available: http://www.energex.com.au/residential-and-
business/contact-energex/frequently-asked-questions/cool-change. [Accessed 15 January 2012]. 

[9]  Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education 
(Commonwealth Government of Australia), “Australian National Greenhouse Accounts,” 2013. 

[10]  A. Syed and K. Penney, “Australian Energy Projections to 2034-35,” Bureau of Resources and Energy 
Economics, 2011. 

[11]  J. Hayward, P. Graham and P. Campbell, “Projections of the Future Costs of Electricity Generation 
Technologies,” CSIRO, 2011. 

[12]  F. Elakrmi and N. Abu Shikhah, “Business Intelligence in Economic Forecasting,” IGI Global, 2010.  

[13]  G. Box, G. Jenkin and G. Reinsel, “Time series analysis, forecasting and control,” San Fransisco, 1970. 

[14]  S. Saab, E. Badr and G. Nasr, “Univariate modeling and forecasting of energy consumption: the case of 
electricity in Lebanon,” Energy, vol. 26, no. 1, 2001.  

[15]  J. H. Park, Y. M. Park and K. Y. Lee, “Composite modeling for adaptive short-term load forecasting,” 
IEEE Transactions on Power Systems, vol. 6, no. 2, 1991.  

[16]  Z. Ren, G. Foliente, W.-Y. Chan, D. Chen and M. Syme, “AusZEH Design: software for low-emission and 
zero-emission house design in Australia,” in International Building Performance Simulation Association, 
Sydney, 2011.  

[17]  A. Higgins, C. McNamara and G. Foliente, “Modelling future uptake of solar photo-voltaics and water 
heaters under different government incentives,” Technological Forecasting & Social Change (pre-
press), 2013.  

24   |  Energy Demand Forecasting 



 

[18]  A. Higgins, P. Paevere, J. Gardner and G. Quezada, “Combining choice modelling and multi-criteria 
analysis for technology diffusion: An application to the uptake of electric vehicles,” Technological 
Forecasting & Social Change, vol. 79, pp. 1399-1412, 2012.  

[19]  P. Paevere, A. Higgins, Z. Ren, G. Grozev, M. Horn, C. McNamara, Y.-B. Khoo and T. Elgindy, “Spatial 
Modelling of Electric Vehicle Charging Demand and Impacts on Peak Household Electrical Load in 
Victoria, Australia,” CSIRO, 2012. 

[20]  Australian Energy Market Operator (AEMO), “Rooftop PV Information Paper,” Sydney, 2012. 

 

 

 
 

  

Energy Demand Forecasting  |  25 



 

 

 
 

 

  

CONTACT US 

t  1300 363 400 
 +61 3 9545 2176 
e  enquiries@csiro.au 
w  www.csiro.au 

YOUR CSIRO  

Australia is founding its future on 
science and innovation. Its national 
science agency, CSIRO, is a powerhouse 
of ideas, technologies and skills for 
building prosperity, growth, health and 
sustainability. It serves governments, 
industries, business and communities 
across the nation. 

 FOR FURTHER INFORMATION 

Energy Technology 
Adam Berry 
t  +61 2 4960 6123 
e  adam.berry@csiro.au 
 
 
 

 

 

26   |  Energy Demand Forecasting 



 

Appendix B 

 
1 

 



1 
 

Transport Demand Forecasting. 

A paper for researchers involved in the Low Carbon Living CRC’s project on 
integrated ETWW demand forecasting and scenario planning for precincts (ETWW: 
energy, transport, waste and water). 

Introduction 
Transport forecasting involves the estimation of present and future year transport 
behavior patterns across a region where the community utilises transport networks to 
achieve daily activities. This process is assisted by the use of computer-based 
modeling packages which estimate travel demands for a population based on socio-
demographic and land use data and assigned to the transport network supply. For 
the transport planner, motorised modes of travel such as cars, trucks, buses and 
trains on the urban networks are often given the most consideration but non-
motorised travel is also of great importance.  
 
Forecasting tools are used by government planning authorities (such as 
Departments of Transport), transport network owners, administrators and managers 
(in general) to development of policy and planning strategies. Future year transport 
forecasting methods may be integrated with energy, water and waste forecasting 
tools to assess overall carbon impacts of urban developments or redevelopments 
effectively and efficiently. 
 

Transport Forecasting Model Types 
A range of transport forecasting approaches have been adopted in practice, many 
with a long history of research and development. The choice of model type often 
depends on the geographical scale, analysis detail required and the resources and 
data available to develop and operate them. Aspects of some of the more common 
approaches are detailed in the following  
 

Inter-City or Nation-wide Transport Forecasting Models (National Models) 
Operating at a national or state-wide network level such as depicted in Figure 1, 
these models represent travel demands between urban locations (such as capital 
cities) and aggregate flows within them. They are often applied to freight demand 
estimation and inter-city passenger demand and account for road, rail, and 
sometimes air and sea-based transport routes. Policy and planning objectives 
associated with these models are highly strategic in nature and temporally they are 
aggregate with representation of long time periods such as annual patterns and 
longer forecast horizons. 
 
Data requirements are also aggregate as models encompass large regions such as 
a state or a whole nation travel demand between urban areas and bulk commodity 
flows across large regions. Representations of travel demand are static, such as a 
single output result of total flow over a given time period. 
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Figure 1: Indicative map of a national land freight network (source: Infrastructure Australia, 
2011)  

 
Such models have been applied to transport networks across Australia 
(Infrastructure Australia, 2011) as well as internationally within countries such as the 

USA (Battelle, 2011), the UK, Sweden, Germany and Italy (Gunn, 2001). 
 

Urban Area/ Metropolitan Strategic Transport Forecasting Models (Macro 

Models) 

Metropolitan area transport forecast models operate over an entire or sub-region of 
an urban area such as a city. They represent multimodal travel demands within 
urban areas with a focus on road traffic and including public transport, non-motorised 
modes (walk, bicycles) and freight. Such models distinguish between classes of 
private-vehicle users and recognise travel aspects such as trip purpose.  
 
Strategic in nature with respect to policy and planning, data requirements are low in 
detail over a large region with land use and socio-demographic data utilised to derive 
demand with strategic transport network and operations represented. Traffic Analysis 
Zones (TAZ) are defined to simplify the data requirements and modeling complexity 
and are necessarily related to the Australian Bureau of Statistics (ABS) zoning 
systems, with a tendency for modern models to equate TAZ to Statistical Areas 
Level 1 (SA1) zoning definitions (ABS, 2011). Over time these models represent 
flows over a typical day with, peak and inter-peak periods often represented with 
static travel demand estimations. In Australia, metropolitan macro models exist for 
the capital cities of Canberra (CSTM), Sydney (STM), Brisbane (BSTM-MM), 
Adelaide (MASTEM), Melbourne (MITM) and Perth (STEM). More detail on this type 
of model is to follow. The strategic network included in MASTEM is illustrated in 
Figure 2. 
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Figure 2: MASTEM strategic model network for Metropolitan Adelaide  

 

Sub-metropolitan/local area Transport Forecasting Models (Micro Models) 

Micro scale travel simulations are appropriate for smaller sub-regions of a 
metropolitan area such as an intersection (as depicted in Figure 3) or collection of 
intersections along a transport corridor. They can represent multimodal travel 
demands with detailed interactions between pedestrians and motorized modes but 
are often developed for vehicular travel only. Strategic modeling applications but can 
also represent the localised effects of changes to operational parameters eg. road 
geometry, traffic signal changes, bus timetable changes and the influence of ITS. 
Due to the detailed nature of the modelling, data requirements are high as much 
descriptive information is required on the demand and the network layout and 
operations. Software also has many parameters that need defining such as 
vehicle/flow characteristics and lane changing behavior. 
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Figure 3: Screen capture example of a dynamic microsimulation model result. 

 
Data specification assumptions/simplifications still occur such as the presence of 
TAZ definitions however these can represent the end of road links or carparking 
locations rather than a cluster of land uses. Time periods are finely disaggregated 
with demand profiles such broken down into 10 minute (or similar periods) required 
for operation. Models represent the dynamic nature of transport interactions with 
continuous transport operations that are visually impressive. Calibration and 
validation of these models is a resource intensive task, especially when larger areas 
are to be modeled. Activity based microsimulation models estimate personal activity 
and travel over the period of an entire day and them represent this on a detailed 
multimodal network (eg. TRANSIMS) 
 

Urban Area/ Metropolitan Strategic Transport Forecasting Models 

(Macro Models) 
 
Strategic traffic modelling approaches are based on the concept of providing 
forecasted travel patterns on the road traffic network with long time ranges (often 
around 10 to 20 years). They are used in the testing of policies that relate to the 
traffic network, estimating the impacts of changes in the network operation. For this 
reason strategic models are extremely useful in assisting the decision-making 
processes of the traffic planner and policy maker in the testing of new and revised 
strategies. 
 
Data requirements for such models include data sets for estimation of included 
parameters, ie. calibration and validation tasks during model development and 
operational data requirements when running the model on a day to day basis. 
Typically these models are developed as four step models with four key stages in 
demand estimation, with support from additional stages to supplement this process. 
The fundamentals of this were developed in the 1950‟s and 1960‟s and apply to 
transport forecasting for urban areas, such as the Metropolitan Adelaide Strategic 
Transport Evaluation Model (MASTEM) model developed for the Adelaide urban 
region (Holyoak et al, 2005) 
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The classic four stage planning model, as depicted in  
Figure 4 with the addition of  land use and trip timing components, has the ability to 
predict the levels of demand for the transport network through the sequential 
execution of the algorithm. Initially, demographic data relating to the population and 
economic activity is used to predict the transport demands created throughout the 
network in terms of trip numbers. The mode by which these trips are made is 
determined and then the trips are allocated to the transport network itself, completing 
the modelling process with the possibility for feedback loops and iterations to 
improve travel estimates. 
 

 
 
Figure 4: Conceptual four-stage modelling process with the traditional four stages in yellow. 

 
The detail or disaggregation achieved in the modelling process is directly dependent 
upon the definition of the Traffic Analysis Zones, or TAZs, for the network. A large 
number of TAZs defined for the study area will mean smaller zones and therefore a 
higher disaggregation. The TAZ allows for the simplification of the modelling process 
as household and individual attributes are considered homogenous throughout the 
zone. The purpose of the TAZ definition is to simplify data requirements and 
computation required. Within MASTEM, the Adelaide metropolitan region is 
represented by 606 TAZ. 
 

Land Use  

Land use plans and population distributions are the main inputs into the travel 
demand models. However, the shape, form and technology of the transport system 
in a region influence its land use development. Thus there has been development of 
land use-transport interaction (LUTI) models which attempt to model the 
development of the land use system in parallel with the development of the transport 
system. A review of LUTI model concepts may be found in Roy et al (1996). The 
basic conceptual approach to LUTI Modelling is by considering the notion of 
accessibility in a region, being the ability of a population to access services and 
facilities and the ability of the service and facility providers to reach that population. 
„Wegener‟s Wagon Wheel‟ (Wegener, 1996) provides a good pictorial representation 
of the chain of considerations that form the interactions between a land use system 
and a transport system.  

Land Use Modelling 

Trip Generation 

Trip Distribution 

Modal Choice 

Trip Timing 

Traffic Assignment 

Feedback 

Loops 
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Figure 5 shows this arrangement. 
 

 
 
Figure 5: Wegener’s wagon wheel representation of the land use-transport interaction, 
indicating the central role of accessibility in determining location decisions and its influence 
by traffic congestion 

 
The key land use decision of individuals is where to locate their homes or 
enterprises. Their decisions translate into travel and communications activity, which 
results in the levels of congestion experienced on the transport system, which in turn 
affects the accessibility of different locations in the region. 
 
There has been considerable research since the 1960s on LUTI Models, but until 
recently these models have not found much use in planning practice. As indicated by 
Tillema and Van Maarseveen (2005), LUTI models can help to improve forecasting 
of land-use transport developments, by extending traditional transport planning with 
a land-use component. Internalising these land use transport interactions in 
traditional transport planning makes planning consistent; land use interacts with 
transport and vice versa. Most contemporary transport planning tools only consider a 
oneway relationship between land use and transport and therefore lack this 
consistency. The dynamic interaction between land use and transport determines on 
a strategic level the autonomous development of transport and land use systems. 
However, while the interaction between land use and transport is widely accepted, 
there is little understanding of the required theory. 
 
One exception of an operation LUTI model is the Cube Land model (Citilabs, 2013 
website) which forecasts land use and land price by simulating the real estate market 
under different economic conditions. For a user-defined scenario, Cube Land 
forecasts the supply and the demand for different types of properties, and estimates 
the location of households and non-residential activities. It can estimate the impacts 
of:  

 economic growth and decline 

 changes in population, employment, and wealth 

 urban management policies 

 specific real estate projects 

 transport infrastructure projects 
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 changes in consumer behaviour. 
 
This model is based on the MUSSA model developed at the University of Chile by 
Francisco Martinez (Martinez, 1992).It uses a microeconomic approach to determine 
an economic equilibrium between land supply and demand. The process also 
considers perceptions of the real estate market, market restrictions, and regulations. 
This is done using a „bid function‟ for each consumer. The bid function estimates 
property values in the market and sets rents and the location patterns for activities. 
The bid function considers consumer preferences, perceptions of parcel attributes, 
and budget restrictions. Model input variables represent the characteristics of 
consumers, properties and neighbourhoods. Such variables might include indices 
that represent accessibility to the transportation system, environmental quality, and 
location.  
 

Generation  

This initial step addresses the question of „shall I travel?‟ posed by a given traveller. 
Trip generation is employed to establish the total number of out of home journeys 
produced from and attracted to each of the TAZ‟s within the study area, or otherwise 
stated, the magnitude of the total daily travel demands. Socio-economic and 
demographic data used in producing the number of trip productions may include 
household income, vehicle ownership and structure of the household unit. Trip 
attraction is dependent on the land uses within the zone and can be based on the 
number of persons employed or the square metre-age assigned to particular land 
uses. As a result of the trip generation stage, the model is supplied with the number 
of trip productions and attractions or trip ends which can be further disaggregated by 
trip purpose. Generated trip productions and attractions can be disaggregated by: 

 Purposes such as work, shopping, education, recreation, employer‟s 
business, other…  

 Time of day including entire day, peaks or inter/post peak times 

 Traveller types, for example classified by household car ownership or income 
group 

 
To estimate the numbers of trips, the trip generation process is commonly achieved 
with the application of category analysis or regression models. Category analysis is a 
simplistic tabular formula when correctly applied to zonal attributes generates total 
zonal productions and attractions. Although this is an uncomplicated and relatively 
quick technique, it lacks flexibility in dealing with the introduction of new household 
structures and determining the best categorisation can prove to be a resource 
intensive process. 
 
Regression equations offer flexibility and the ability to provide greater accuracy in trip 
generation. The objective is to find a relationship between the number of trips 
produced or attracted by the zone, using characteristics of the zone as independent 
variables. It is also possible to gauge the accuracy of the regression equations with 
the use of associated statistical methods (eg. the determination of the R-squared 
statistic). An example of a generalized regression equation is: 
 

nni XbXbbTP  ...110  
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where TPi are the trip productions from zone i, b0 is a constant, b1 to bn are 
coefficients to be estimated and X1 to Xn are zonal descriptive. 
 

Distribution  

Step two of the process addresses the traveller‟s question of „where shall I travel to?‟ 
It is necessary to establish a picture of the pattern of trip making behaviour by 
distributing the trip productions amongst the available destination or attraction points 
in the study area. This leads to the construction of a trip matrix ( 
Figure 6), a two-dimensional array with entries representing the total number of trips 
Tij from each production zone i to all attraction zones j.  
 

 
 
Figure 6: Conceptual trip matrix structure. 

 
To assist in this estimation procedure, further inputs relating to transport network 
attributes including in-vehicle travel times, waiting and transfer times and fares or 
tolls incurred by the traveller during the journey. The gravity model is a common 
technique employed at this stage. A generalised form of the gravity model equation 
is presented as follows: 
 

)( ijjjiiij cfDBOAT   

 
Here, the total trips T between two zones i and j is calculated based on Ai and Bj 
which are balancing factors applied to Oi the trips origins from zone i and Dj the trip 
destinations to zone j. The cost function f(cij) defines some impedance between 
zones i and j, which is often represented by an exponential function, and usually 
includes travel time and/or distance. The gravity model as defined here has been 
present in one form or another for over 100 years and was first utilised in the 
transport planning process when the analogy between the spatial interaction of trip 
making and the gravitational interaction of physical bodies distributed over space 
was developed. 
 

Modal Choice 

At this stage the traveler now has the question of „how shall I travel?‟ The modal 
choice process represents the traveller‟s discrete choice decision on which mode to 
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select for the journey. It is at this point that a travel mode is allocated for the journey 
between the origin and destination established in the previous stages. The trip matrix 
used as input in this stage is disaggregated into trip matrices for each of the modes. 
Attributes of the mode, traveller and the journey are involved in the mutually 
exclusive decision represented here. Modes represented in the MASTEM tool 
include walk, bicycle, public transport and car with the motorised modes, and 
especially the car journeys are of particular importance for strategic planning 
purposes.  
 
The discrete choice process is achieved with the use of a calibrated estimation tool 
such as a discrete choice model. One example of a discrete choice model 
formulation widely applied in practice is the multinomial logit model, with a 
generalised formulation as follows: 
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In this model, Pmi represents the probability of an individual i selecting choice m from 
all mode choice alternatives. The the β parameter is related to the common standard 
deviation of the Gumbel (or extreme value type one) distribution and the utility of m is 
component Umi, an additive linear function of measured attributes such as: 
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In the utility function that here for alternative r, α is an alternative-specific constant, 
the Xj‟s are the mode specific variables and the Yk‟s are person-specific variables 
with β and γ calibrated coefficients. Discrete choice models have many applications 
both within and outside of the transport forecasting field. More information on these 
models can be gained from literature such as Hensher, Rose and Greene (2005). 
 

Trip Timing 

With the development of interest in time dependent travel demand analysis, for 
instance for phenomena such as „peak spreading‟ as part of travel demand 
management, shorter time intervals (peak period vs off-peak, length of a peak 
demand period, etc) became of interest. A new (fifth) question can be added to the 
traveller decisions incumbent in the earlier „four-step‟ process – „when shall I travel?‟, 
which may be described as „trip timing‟. The traveller‟s decision based on this 
question could well depend on the differences in traffic congestion (delays, queues, 
seat availability, parking availability, etc) occurring at different times of day. Timing 
choice can be achieved by mean of applying a discrete choice model such as 
demonstrated by Holyoak, (2002). 
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Assignment 
The final question in the sequence is „which route shall I take?‟ In the final stage of 
the four stage modelling process, all desired road-based journeys are assigned to 
the transportation network, essentially completing the algorithm by matching network 
supply and travel demands. There are several techniques used to achieve this and 
all result in establishing a pattern of traveller demands within the prevailing 
conditions of the road network. Again, the private vehicles (including freight) are the 
focus of this process with some models including a separate assignment routine for 
and public transport trips representing persons travelling on multimodal services.  
 
Willumsen (2000) reports that most traffic assignment methods employ three basic 
steps, repeating some if they require an iterative process, until they reach stable, 
convergent solutions. In outline, these steps are: 
 

1. To identify a set of routes attractive to drivers; these routes are identified and 
stored in a structure called a tree, and therefore this task is often called the 
tree building stage. 

2. To assign suitable proportions of the trip matrix to these routes or trees; this 
results in flows on the links in the network. 

3. To check for convergence. Many techniques follow an iterative pattern of 
successive approximations to lead to an ideal solution, eg. Wardrop‟s 
equilibrium (Wardrop, 1952); convergence to this solution must be monitored 
in order to decide when to stop the iterative process. 

 
Techniques used to find appropriate paths through the road network from origin to 
destination can be grouped into those that do and do not include stochastic effects 
and others that do or do not consider the influence of traffic congestion.  
 
The all or nothing approach is the most simple traffic assignment technique ignoring 
both the congestion and stochastic effects and therefore assuming that the penalty 
for using a link, or the link cost, is fixed regardless of traffic volumes. It also assumes 
that all travellers consider the same attributes in the same way with the same relative 
importance given to them. The modelled effect of this is that all drivers wishing to 
travel between zones i and j will take the same route, that being the most attractive 
(e.g. least cost incurred). 
 
Stochastic effects introduce variability in the travellers‟ perceptions of the network 
attributes and the objectives that they seek to attain (e.g. minimal cost incurred). The 
logit assignment, or route-splitting technique, is a method of improving the simple all 
or nothing technique, with the Dial (1971) approach probably the most widely used 
incarnation. It involves the use of a logit model to disperse proportions of the trips to 
different routes. The most common approach to the probit-based stochastic 
assignment is based on Monte Carlo simulation where link costs are randomised 
before a deterministic user equilibrium is sought, simulating an error between 
individuals‟ perception of costs. 
 
Road links with a network possess a finite capacity. Associated with a limited 
capacity are restrictions on the amount of traffic to flow through a road link segment 
over a period of time. Between the traffic flow extremes of “free-flowing” (low traffic 
demand) and “crawling” (very high traffic demand) are degrees of congestion, best 
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described in the modelling process with the use of a congestion function. The widely 
applied Akçelik (1991) time dependent travel time function is: 
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Within the travel time function, c represents congested travel time on the road link, c0 
represents free-flow travel time, rf is the ratio of the flow (analysis) period to free-flow 
travel time, x is the volume-capacity ratio, C is the link capacity and JD is a delay 
parameter. 
 
In traffic assignment procedure, trips from the appropriate origin-destination matrix 
are allocated to the traffic network, subject to its constraints. The traffic network is 
represented in the model by individual links with associated attributes, meeting at 
nodal points and often intersecting with other links. The continuity of flow equations 
provide a generic solution to the traffic assignment problem and ensure that 
demands represented by the origin-destination matrix are satisfied. Wardrop (1952) 
postulated two principles for reaching equilibrium between traffic demands and the 
supply of the network itself. The first and most widely applied of Wardrop‟s principles 
can be stated as „Under equilibrium conditions traffic arranges itself in a congested 
network such that all used routes between an OD pair have equal and minimum 
costs while all unused routes have greater or equal costs’. 
 
That is, when equilibrium is reached, journey times on all routes between an origin 
and a destination are equal and shall be less than times experienced on any other 
route. This is a result of individual drivers seeking to optimise their own travel time, 
independent of the behaviour of all other drivers. Mathematically, this can be 
represented as the following constrained optimisation problem: 
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0rijX
    for all r, i, j 

 
where 
 

eijr = 1  if e is on path r from i to j 
= 0      otherwise 

 
In this optimisation model, the objective function is Z, ce(q) represents the link travel 
cost (travel time), and q(e) represents the traffic flow rate on the link. This model is 
known as the user-equilibrium traffic assignment problem for fixed travel demand 
(because it assumes that all Tij are held constant). Replacing the objective function Z 
by  
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with the same constraints yields an elastic demand user equilibrium in which the 
zone to zone trip numbers Tij (i.e. the O-D matrix) can also vary in response to 
congestion on the transport network. In the formulation of this elastic demand user 
equilibrium problem α is the decay constant in the specific form of the trip distribution 
gravity model with a negative exponential deterrence function, i.e. 
 

)exp( ijjjiiij cDbOaT 
 

 

Feedback Processes 

Iterative feedback loops involve traffic condition information resulting from the route 
assignment returned to previous stages as the model is re-estimated in successive 
runs.  Calculations of the generation, distribution trip timing and modal split of trips 
are based on better estimates of travel costs and times and this process is repeated 
until an acceptable balance is achieved between the travel costs and times used in 
estimation and those output by the route assignment model. 
 

Practical Aspects of Modelling 
Today, there exists a range of available software packages to assist in the 
development of these models, each with it‟s own particular strengths. Some of these 
software packages are Cube (Citilabs), TransCAD (Caliper) and SATURN (Atkins, 
2013). Irrespective of which package is adopted, all strategic transport forecast 
models require data to operate.  
Figure 7 illustrates the MASTEM modelling processes with the types of data required 
for operation and outputs that are possible. 
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Figure 7: Strategic modelling processes and data elements. 

 
Data requirements can vary somewhat from model to model and are heavily 
dependent on the model configuration, availability and local area suitability. Those 
provided here are with reference to Adelaide metropolitan transport forecasting.  
 

Modelling Inputs 
Broadly in terms of information input, the data describe the nature of the transport 
system and the people and activity opportunities around it.  
 

Zoning Definition 

Traffic Analysis Zone (TAZ) representation through centroids connected to the 
strategic network. Connectors are a representation of the local street network. TAZ 
are defined by planning authorities and often will take into consideration population 
densities, location of transport provisions and concentrations of land-use 
development with connections to ABS census zoning definitions important for 
compatibility of data. 
 

Road Networks 

Geo-spatial representation of the strategic road network, often assembled in GIS  
with link and intersection data attached. Critical links attributes include speed and/or 
travel time, capacity, and length. Speed-flow relationships for each link type also 
define how the link performs under congested conditions. The strategic road network 
is defined by planning authorities will take into account major and strategic transport 
routes, public transport facilities and network connectivity.  
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Public Transport Network 

The Public transport networks are primarily based on road network with additional 
links for non-road modes such as rail, bus-only etc. Service routes require definition 
in terms of the path taken, headway/frequency, stops, direction and mode. 
Operational service information such as ticketing and transfer costs, wait times and 
modes (vehicle types, capacities). Connectivity is completed with the inclusion of 
walking links connecting zone centroids to the PT network. A range of data sources 
may be used to define these databases, the majority of which will be from the service 
providers and planning authorities with service routes, timetables and costs often 
freely available to the public. 
 

Intersections  

Intersections of strategic importance are described in more detail, particularly if they 
are signallised. Intersection layout, and type are required and for signallised - cycle 
and green times, phases, capacity, lane geometry (turn lanes etc), banned turns 
whereas unsignallised intersections are simply represented with a delay turn penalty. 
Planning and network operation authorities are the suppliers of this information. 
 

Socio-Demographics  

Population and household attributes for each TAZ are included in the model 
estimation routines, including the total population and households, numbers of 
residents, workers, dependants and cars or income per household. This data is 
estimated by planning authorities and based on census information with 
consideration given to forecast housing and related developments, planning policies 
as well as historical trends. 
 

Land Use 

For each zone descriptive information relating to the total jobs in industries including 
services, manufacturing, technical, trade, retail, education, entertainment and other. 
Also included are total enrolments for primary, secondary and tertiary education 
institutions. This data is estimated by planning authorities and based on existing land 
use with consideration given to forecast land use developments, planning policies as 
well as historical trends. 
 

Freight 

Total vehicle or commodity flows between TAZ‟s are included and a range of 
sources are utilised for the estimation of freight demand. In some models, limited 
networks for freight vehicles apply. By and large, freight demand estimation models 
are less well developed than the passenger models. 
 

Modelling Output Types 

Forecast data outputs describe the nature for the travel demand and resulting travel 
behavior for the metropolitan region as a whole. 
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Travel Demand 

For each TAZ, the total number of trip productions and attractions which may be 
disaggregated by trip purpose, household type, car ownership, time of day or other 
classification. Following on from this the model routines can also provide trip 
matrices that summarise total trips between origin and destination pairs such as 
depicted in  
Figure 8, again disaggregated by the same classifications as trip productions and 
attractions. 
 

 
 
Figure 8: Example of a trip matrix representing travel demands. 

 

Network Travel Patterns  

Patterns of travel are represented in macro models as total vehicular or passenger 
flows on network links and at intersections, supplementary representations including 
select link analysis. This is assisted with the use of a GIS environment and analysis 
assisted with the use of GIS tools and additional information layers as depicted in the 
following figure. 
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Figure 9: Examples of network traffic volumes and congestion (left) and intersection flow 
(right) outputs. 

 
From the model outputs it is also possible to estimate network environmental 
impacts such as emission production, noise production and energy consumption 
estimates based on link (eg. speed, level of congestion) and vehicular flow 
characteristics. An example of emission output representation is provided in Figure 
10. 
 

 
 
Figure 10: Example of network emissions output. 

 
Emission estimates can also be reported at the zonal level as emissions resulting 
from travel generated by the zone, a useful approach when considering precinct-
based analysis. 
 

Activity Based Modelling 
Approaches described so far have focused on estimating travel demand forecasts 
purely in terms of trip estimation. Currently, this is by far the most popular method 
applied throughout Australia and Internationally. An alternative approach which has 
received growing attention in past decades is the activity-based forecasting 
approach. 
 
Activity based modelling focuses on the estimation of individuals‟ activity locations in 
time and space. Travel is therefore a derived demand that gives recognition to 
complex interactions, including those at the household and related to travel. The 
organization (scheduling) of trips is considered as part of pursuing multiple stops in a 
single journey from home, necessary to complete the desired activities. 
 
The activity-based approach requires time-use survey data for analysis and 
estimation and can offer models that are more complex in nature than traditional 
four-stage approaches. In turn, greater effort and resources may be required to 
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accurately calibrate such models that operate at a finer data resolution. Resulting 
tour-based travel structures on activity-based platforms (scheduling) offer forecasts 
at a microsimulation level.  
 
One foundation approach to activity based models involves a heavy reliance on 
discrete choice model applications. These techniques have been discussed in 
previous sections of this paper. 
 

GIS Data Management 
Transport planning data such as socio-demographic and land use inputs and 
network-based outputs have a common spatial element such as network link location 
and zone location. A GIS is therefore well suited for the management and 
interpretation of such databases with visual display possibilities when mapped. GIS 
can add to the analysis of transport forecasting outputs with additional mapping and 
data layers including energy use, waste production, water use as well as other 
resources such as census and planning data. 
 

Behaviour Change 
In essence, transport forecasting models strive to replicate the decision-making 
process associated with people‟s need to travel. In many ways they therefore have 
the ability to forecast different aspect of behaviour change in response to policy 
levers (eg. Holyoak, 2002), provided that the model contains calibrated parameters 
that reflect the policy aims. Subsequently these models are used in to forecast the 
potential impact of policy strategies and this gives them potential to forecast travel 
decisions such as whether to travel or not, destination choice, time of travel and 
mode of travel and their impact of low-carbon technologies, policies and strategies.  
 
It also also possible to apply manipulation functions to post-model run outputs that 
reflect behavioural responses to policy (Taylor, 1999). One example of this would be 
the application of elasticity functions to travel demand matrices. Potential to 
represent the influence of many low-carbon living policies on travel behaviour 
provided there is sufficient accurate information available to allow for these 
calculations. 
 

The Precinct 
Metropolitan-wide models described here estimate the travel made to and from 
destinations within the metropolitan region as a whole. In terms of transport 
forecasting, a precinct is a sub-region of the network with: 

(1) some travel occurring completely internally, 
(2) some will travel to/from destination/origin outside, 
(3) some travel will pass completely through with both the origin and destination 

completely outside, 
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The existing modelling routines can account for (1) with existing however some other 
estimation technique will be required for (2) and (3). Travel that has either an origin 
or destination or both will require further estimation calculations, assisted by the data 
for the metropolitan region. 
 

Transport Interactions with Energy, Waste and Water  
From a transport perspective, possible areas of interaction with water, waste and 
energy demand forecasting that may occur in an integrated ETWW modeling 
approach may occur as: 
 

 Transport demand and the use of „traditional‟ liquefied fuel energy sources, 

 Electric vehicle transport demand and the use of electricity, 

 Telecommuting and increased household-based activity, impacting on energy, 
water and waste, 

 The physical transport of household, industrial and other waste to processing 
locations, 

 
The list of possible interactions is not exhaustive and other significant and non-
significant interactions are possible. 
 

Conclusions 
This research focuses on developing a tool that forecasts low carbon impacts for a 
precinct, therefore the definition of that precinct is critical. This definition is not only 
the geographical extent but also the components contained within as well as time-
span and forecasting horizons. It is necessary to forecast the low-carbon potential 
asiciated with activity contained completely within the precinct and also necessary to 
provide estimates that include selected activity and impact beyond the precinct 
boundary. 
 
Integration between energy, transport, waste and water requires the identification 
and modelling ability to forecast interactions between these domains. This will be 
assisted through a common modelling platform with base operational data elements 
and data management and integration with GIS. It is recommended that the 
adequate identification and description of the household unit will play a key role in 
this process. 
 
As this project aims to allow for scenario planning for ETWW under low carbon 
futures, transport as well as all other fields needs carbon estimation routines. For the 
transport sector this largely relates to to vehicular emissions for which there are 
modelling approaches available and widely applied in practice. The focus of this 
research will also identify and present planning scenarios and alternatives for low 
carbon strategies. 
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Key Literature and Resources 
Over the past years, the transport modeling/forecasting area has been well 
researched and documented. Much literature on forecasting including revised 
approaches, applications, additions and critiques. Examples of some of key literature 
that expands on topics raised herein including modelling, applications and 
sustainability include: 

 Ortuzar and Willumsen (2010), 

 Hensher and Button (eds, 1994), 

 Bhat and Koppelman (2003), 

 Holyoak et al (2005), 

 Ryley and Chapman (eds, 2012). 
 
In addition, the following websites describe particular software suites as well as 
provide links to further information sources:  
 

 Cube software website (Citilabs, 2013), 

 EMME software (Inro, 2013) 

 TransCAD software website (Caliper, 2013), 

 The US Travel Model Improvement Program website (TMIP, 2013). 
  

http://www.citilabs.com/
http://www.inrosoftware.com/en/products/emme/index.php
http://www.caliper.com/
http://www.tmiponline.org/
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Modelling and representing precinct-level travel demand – a discussion note 
 
M A P Taylor, Emeritus Professor, School of Natural and Built Environments, University of South 
Australia, and Program Leader ‘Low Carbon Precincts’, CRC for Low Carbon Living 
 
 
Introduction 
 
The Low Carbon Living CRC includes a major research program on low carbon precincts, and is 
funding an initial major research project on the simultaneous and integrated estimation of demands 
for energy, transport, waste and water (ETWW).  
 
Carbon emission performance is a key consideration in precinct analysis. Indeed, reduction of such 
emissions is a key objective of the CRC. Quantitative estimation of carbon performance at the 
precinct level is required so that full knowledge of this is available to developers, planners, designers, 
infrastructure systems managers and service providers. 
 
Thus the demand forecasting tools need to be capable of use in estimating carbon emissions at the 
precinct level and to relate these to the demand for infrastructure and services use by precinct 
residents and occupants. In the case of travel demand, the precinct has to be viewed as a source of 
carbon emissions, although (e.g. for precinct-based travel that takes place outside the precinct) the 
location of the emissions will be outside the precinct. All such emissions need to be accounted for. 
 
The standard representations of travel demand and resulting loads on transport networks have the 
capability to provide suitable representations of precinct travel demands, but some re-adjustment of 
the ways to present the demands will be required. 
 
Regional travel demand forecasting 
 
The transport demand forecasting paper (Holyoak, 2013) produced for the ETWW project describes 
the general methods used to estimate travel demand and transport network performance at the 
regional level, including the travel demand of a specified precinct. 
 
In terms of the standard representation of a study region in the travel demand models, i.e. through 
the use of small scale traffic activity zones (TAZ)1 to represent the distribution of land uses and 
population across the region, the precinct may be considered as an individual TAZ. This is a first step 
in representing precinct travel demand, as it means that the demand is explicitly included and is 
identifiable in the outputs from the regional travel demand model. One issue here is that the given 
precinct may be part of an existing TAZ in the regional model, depending on its physical size or its 
population. In this case, and in general to meet the requirements of precinct level planning and 
design, the precinct should be treated as a TAZ in its own right in the regional model. This could 
therefore require partition of an existing TAZ in to two separate TAZs, one for the precinct and one 
for the remainder of the original TAZ. For purposes of the following discussion the precinct is 

1 A TAZ is defined in principle as a small geographic area of homogeneous land use, compatible with 
administrative boundaries and conventionally separate from the major transport networks (i.e. network links 
may form part of the spatial boundary of the TAZ but would not puncture it). The size of the TAZ generally 
depends on the basic level of aggregation of available socio-economic and demographic data. Thus, for 
example, the TAZ could be no smaller than a CCD (or its equivalent). Historically, due to computational and 
computer memory and storage constraints, TAZ would have been composed of 2-4 contiguous CCDs, but the 
advances in computer technology now mean that a TAZ can often and reasonably be taken as an individual 
‘CCD’. 
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considered to be a TAZ and given the set i =1, ..., n of TAZ in the region, the precinct is designated as 
the TAZ with i = ψ. 
 
The designation of the precinct as a TAZ may be seen in Figure 1, which is a schematic representation 
of the precinct and the (urban) region in which it is situated. 
 

 
 
Figure 1: The precinct as TAZ ψ in the study region 
 
On the basis of treating the precinct as a TAZ, a full travel demand forecasting analysis can be 
undertaken for the region. This will include the generation of travel, trip distribution, mode choice, 
time of day analysis and traffic assignment to yield traffic volumes, passenger movements and freight 
flows on the strategic transport network of the region, which will be in balance (equilibrium) with the 
final modelled travel costs (including travel times, and hence congestion levels) on the network. This 
is the conventional output from a regional travel demand model. Given that there will be good data 
for a given precinct, the issue of the precinct being smaller than an existing TAZ (which contains the 
precinct) will be resolved simply: all necessary information for use in the regional travel demand 
model will be available as part of the precinct design data, including data for alternative design 
scenarios. 
 
For precinct-based analysis we need to be able to focus on, identify and utilise the transport demand 
associated with the precinct. 
 
This can be done by examining the origin-destination (O-D) trip matrices available from the regional 
analysis. There will be a family of these matrices, indicating travel by trip purpose (k), mode (m) and 
time of day (t) in the region. Specifically, each matrix may be written as 
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in which kmt
ijT  is the number of trips between origin i and destination j for trip purpose k made by 

transport mode m and starting in time interval t. 
 
For simplicity of notation in the following model definitions, let us just consider a generic O-D matrix 
T defined as  
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while remembering that this is one of a family of such matrices. 
 
Accompanying the O-D matrix is a similar matrix C containing the travel costs between zone pairs, i.e. 
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which also forms part of the output of the regional travel demand model (cij is the travel cost 
between origin i and destination j). There will be a family of these matrices, by mode and time of day 
(if not also trip purpose). In addition, there may be alternative definitions of travel cost, including 
distance, travel time, or generalised cost. Distance will be determined by network topology but travel 
time and generalised cost will also depend on levels of congestion on the network. 
 
The region-wide travel demand of the precinct is in two parts, both of which are held in matrix T: 
 

1. trips originating from the precinct, given by the row vector rψ 
 

[ ]nTT ψψ ...1=ψr         (4) 

 
and 

 
2. trips finishing in the precinct, given by the column vector sψ 
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These two vectors are the row and the column for ψ in the O-D matrix of equation (2). 
 
While these two vectors describe all travel demand with a trip end in the precinct, they cannot be 
used directly to model that demand due to double counting of the intra-precinct demand Tψψ. 
 
To remove the double counting, define two new vectors of trips: (1) extra-precinct travel demand 
with origins in the precinct (uψ) and (2) extra-precinct travel demand with destinations in the 
precinct (vψ). These two vectors are: 
 
 [ ]nuu ...1=ψu         (6) 

 
in which jj Tu ψ=  for j ≠ ψ and 0=ju  for j = ψ; and 

 
 [ ]nvv ...1=ψv         (7) 

 
in which ψii Tv =  for i ≠ ψ and 0=iv  for i = ψ. The intra-precinct travel demand Tψψ is then treated 

as a separate quantity (which, for example, is not assigned to the regional transport network because 
it does not leave the precinct). 
 
The total travel demand generated by the precinct is given by the trip sum N(ψ), which is 
 

 ψψψ TvuN
n

j

n

i
ij ++= ∑ ∑

= =1 1
)(        (8) 

 
noting that N(ψ) may not always be a fixed number (e.g. in an analysis including elastic travel 
demands as would be the case in the study of travel behaviour change). 
 
The total travel cost Z(ψ) of precinct-generated travel is  
 

 ψψψψψψψ TcvcucZ
n

i
ii

n

j
jj ++= ∑∑

== 11
)(       (9) 

 
Knowledge of precinct trip interchanges and travel costs may be used to estimate energy 
consumption, air quality emissions, greenhouse gas emissions, and carbon performance of precinct-
related travel, given additional information or assumptions about the proportions of different 
vehicle/fuel types used for that travel. Our previous research has seen the development of a family 
of suitable models for this purpose, from simple fixed rate per unit distance models to models 
reflecting variable congestion levels across a network. 
 
Estimation of energy, pollutant and carbon for precinct travel 
 
Equation (9) indicates that travel costs associated with travel out of the precinct, into the precinct, 
and inside the precinct can be identified separately. 
 
A convenient representation of precinct-related travel and its costs is as a trip length frequency 
distribution (e.g. Figure 2), which can be derived from the available trip numbers and travel costs 
(see equations (3) – (8)). The frequency distribution may also be used to estimate energy, general 
emissions and carbon performance of the precinct at the regional scale. Separate trip length 
frequency distributions for out-bound precinct travel and in-bound precinct travel can be generated. 
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In addition, distributions for travel by time of day, for a given mode, or for a given trip purpose can 
also be computed given the individual frequency distributions. 
 
 

 
 
Figure 2: Example trip length frequency distribution for a precinct 
 
We have previously established methods for estimating energy consumption and pollutant emissions 
from the outputs of regional travel demand models. These methods are also suitable for estimation 
of carbon performance of precinct-based travel. Appendix A describes a generic model for energy 
and emissions estimation. This model is formulated for use at the network link level but may also be 
applied at more aggregate levels such as that of the trip length frequency distribution. 
 
If more detailed information on network travel conditions and congestion levels is required (i.e. a 
link-level analysis identifying when, where and by whom energy is consumed or emissions are 
generated) then this can be obtained through further modelling and analysis, initially using a multi-
class traffic assignment and when necessary a path-flow estimator such as that described by Bar-
Gera, Boyce and Nie (2012). 
 
We have established methods for estimating energy consumption and pollutant emissions from the 
outputs of regional travel demand models. These methods are also suitable for estimation of carbon 
performance of precinct-based travel. 
 
Intra-precinct travel demand analysis 
 
Given the energy/carbon focus of Low Carbon Precincts research, further consideration should also 
be given to intra-precinct travel, as low carbon options may seek to maximise this, e.g. through 
mixed land use development. This will also give direction as to the appropriate form of the travel 
demand estimation models at the precinct level. On this point, note that behaviour change is an 
important consideration in the general research activities of the CRC, and so model forms that can 
accommodate behaviour change are also important. 
 
The precinct design methods under consideration will also mean that the precinct will be defined in 
some detail and that a comprehensive data description of the precinct will be available, through the 
Precinct Information Model (PIM). A discussion of the concepts of PIM and its formulation is available 
in Newton et al (2013). Usefully, this report also provides a working definition of a precinct: 

‘a precinct can be represented an urban area of variable size that is considered holistically as 
a single entity for specific analyses or planning purposes, as well as in a contextual sense to 
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represent the interactions that occur with elements of the surrounding urban area. It 
typically comprises land parcels occupied by constructed facilities (generally buildings), 
including open space, and often clustered in to urban zones that share some common 
characteristics (uses) and supported by physical infrastructure services to manage energy, 
water, waste, communication and transport as well as a range of social infrastructures 
related to health care, education, safety, retailing and entertainment’ (Newton et al 2013, 
p.6). 

 
The precinct may thus be taken to consist of a small geographic area including building and facilities, 
serviced and connected by infrastructure networks. The networks will include streets and pathways 
for physical movement, so that the precinct contains its own transport network(s). It can be 
considered as a set of micro-zones, which represent the buildings, facilities and other activity zones 
within in, all connected by an internal network, and represented in a PIM. 
 
Figure 3 provides a schematic representation of a precinct suitable for the purposes of travel demand 
estimation. 
 
 

 
 
Figure 3: Representation of a precinct as a connected set of buildings and facilities (which can be 
represented as ‘micro-zones’) 
 
The buildings and facilities are occupied and/or used by residents, enterprises, businesses, service 
providers, workers, customers and service users. The micro-zones may be considered as a study 
region in microcosm. The intra-precinct travel demand (defined by Tψψ in the previous discussion on 
regional travel) represents the total amount of travel movement within the precinct, which of itself 
has origins (h) and destination (d) between the micro-zones. Thus there is an internal O-D matrix τψ 
for the precinct, 
 

 [ ]ψτ hd=ψτ          (10) 

 
with 
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 ∑=
hd

hdT τψψ          (11) 

 
Precinct-level travel demand analysis will require knowledge of both ex-precinct travel uψ and vψ, 
together with τψ. This may require study of trip chains, in which a traveller makes multiple stops in a 
tour anchored at a particular site, such as the individual’s home. Given the interest in travel 
behaviour change in low carbon transport, this may be a necessary consideration. Given that the 
conventional regional travel demand models are not designed for trip chaining analysis, it may be 
necessary to move to an activity-based modelling approach (which is available in the commercial 
software packages such as CUBE). It may also be useful to consider LUTI (land use-transport 
interaction) models in this regard. 
 
The basic unit for analysis of intra-precinct travel needs to be cast at a finer grain than the TAZ. The 
most likely units of analysis would be the household for home-based travel and the enterprise 
(office, shop, etc) for non-home-based travel. This suggests the use of utility-maximising discrete 
choice models for transport choices at the following steps: vehicle ownership and access, trip 
generation, trip distribution, modal choice and time of day, as these models can be estimated at the 
household level and can capture the individual differences between household. Their results may be 
used in the macro-level models for regional analysis – i.e. the focus of study is always on the precinct, 
which is examined in detail whereas more aggregated (TAZ-level) analysis is used for all other zones. 
The precinct models will produce the basic O-D and travel cost matrices, which would then be 
refined by the use of a regional network traffic assignment model (for ex-precinct travel) and 
perhaps a multi-modal microsimulation model for intra-precinct travel. Given that we have access to 
suitable models in this regard (e.g. Aimsun and (especially) Commuter) this is quite feasible. 
 
A key to considering low carbon transport options (or indeed alternatives to transport) may be found 
in the concept of transport accessibility planning, for which accessibility is defined , for example, as 
‘the ease for people to participate in activities from specific locations to a destination using a mode 
of transport at a specific time’ (Primerano and Taylor, 2005). Transport accessibility is concerned with 
the ability of people to access services and facilities within close proximity, and the ability of service 
providers to cater for the needs of a local community. Accessibility analysis may be used to locate 
services in and around a precinct and to identify opportunities provided through telecommunication 
and on-line services as substitutes for physical movement. 
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Appendix A: A generic transport network model for energy, fuel and emissions analysis 
 
A generic model of energy and emissions performance of transport networks can be defined which 
uses the outputs of a regional travel demand model and which is responsive to different transport 
and vehicle technologies, variations in travel demand and levels of congestion on the network. This 
model may be applied at different levels of aggregation, including: 

• a ‘simple’ model of travel between origins and destinations, requiring information on trip 
movements between O-D pairs and the distances between them and average energy  
consumption and emission generation rates per unit distance for different vehicle and 
energy types 

• a congestion-responsive model of travel between O-D pairs, using the average speed of 
travel (and hence consumption and emission rates dependent on macro-level congestion) 

• a link-based model which allows maximum flexibility and detail for the analysis of where and 
when fuel consumption and emission generation occurs, and which allows fully for 
interactions between vehicle flows and resulting traffic congestion across the network. 

Further, the generic model may be used for all modes of urban transport. 
 
The generic model is defined by the following system of equations. The equations are described at 
the network link level in the first instance, but simplified versions of the model may also be applied 
to flows between O-D pairs, for which the link representation is replaced either by the spatial 
separation distance between origin and destination or the network path(s) between them. At the link 
level, the generic model can calculate the total amounts of fuels and energy consumed and emissions 
produced by all traffic on each link in a network. The system is such that it enables the energy and 
emissions results to be sensitive to parameters such as increasing load factors, changing proportions 
of vehicle and fuel types in the vehicle fleet, different road types and different congestion levels. This 
is important because many transport-land use policy options and transport system management 
schemes may vary these and other parameters in different ways on a link-by-link basis. 
 
The basic input to the fuel and emissions modelling system is the result of a multi-class user 
equilibrium traffic assignment for the network. This model will provide data not just on total flows on 
the network links and paths but also on the flows of individual vehicle types. The average traffic 
volume (veh/unit time) on link (or path) a in time period t is qt(a), given by  
 

∑=
r

rt
t

t aQ
U

aq )(1)(  

 
where Ut is the duration of time period t and Qrt(a) is the total number of type r vehicles assigned to 

link a in t. [The total time period (e.g. one day) for the analysis is given by ∑=
t

tUU .] 

 
The average link speed vat in time period t, which reflects the level of congestion on the link in the 
period, is also an output from the assignment model, is  
 

)),(( atat Laqvv =  

 
where La is the link class for a. Let: 
 

),( taEX  = emission rate per unit distance for pollutant type X emission on link a in time 
period t (g/km) 

)(aGt
X  = total mass of pollutant type X emitted on link a in time period t (g) 
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)(aGX  = total mass of pollutant type X emitted on link a per day (g) 

),( taf s  = energy/fuel consumption rate per unit distance for energy/fuel type s on link a in 
time period t (e.g. L/100km) 

)(aF t
s  = total volume of energy/fuel type s consumed on link a in time period t (e.g. L) 

)(aFs  = total volume of energy/fuel type s consumed on link a per day (e.g. L) 

prs = proportion of class r vehicles in fleet using energy/fuel type s  

grsX = base type pollutant X emission rate per unit distance for vehicle class r and 
energy/fuel type j (g/km) 

hrs = base energy/fuel consumption rate per unit distance for a class r vehicle using 
energy/fuel type s (e.g. L/100km) 

)),(( atat Laqv  = average travel speed on link a in time period t 

)( arsX vµ  = speed correction function for type X pollutant emission from vehicle class r and 
energy/fuel type s on link a with average speed va 

)( ars vρ  = speed correction function for type s energy/fuel consumed by vehicle class r on 
link a with average speed va 

rsXλ  = load correction factor for type X pollutant from vehicle class r and fuel type s 

ωrs = load correction factor for energy/fuel type s consumed by a class r vehicle 

da = length of link a (km) 

 
The energy/fuel consumption rate for fuel type s per unit length on link a in time period t is then 
given by 
 

∑=
r

rsatatrsrsrtrss LaqvhaQptaf ωρ ))),((()(),(      (A1) 

 
so that total quantity of energy/fuel type s consumed on link a in time period t is 
 

),()( tafdaF sa
t

s =          (A2) 

 
and the total quantity of energy/fuel of type s consumed on the link per day is 
 

∑=
t

t
ss aFaF )()(          (A3) 

 
For pollutant emissions, the emission rate per unit distance for pollutant X on link a in time period t is 
given by 
 

rsXatatrs
s

rsXrs
r

rsX LaqvXgpaQtaE λµ ))),((,()(),( ∑∑=     (A4) 

 
so that the total quantity of X emitted from the link in time period k is 
 

),()( taEdaG Xa
t
X =          (A5) 

 
and the total quantity of X emitted per day on the link is 
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t

t
XX aGaG )()(          (A6) 

 
The speed correction functions are used to incorporate the impacts of travel demand and traffic 
congestion (as well as road design standards) into transport energy and emissions analysis. Higher 
levels of demand and congestion generally imply lower average travel speeds. Road design standards 
also affect travel speeds. In previous research we have established a suitable family of models 
covering wide ranges of vehicle and fuel types, and including many emissions of interest (Taylor et al 
2005). The basic forms for the family of models were taken from the European emissions inventory 
guidebook (EEA 2002) then modified for Australian conditions using the available local databases. 
The guidebook also suggested a model for the effects of varying vehicle loading levels on fuel and 
emissions performance, which is useful for considerations of the performance of goods vehicles and 
transport and logistics policies that encourage load consolidation. The models relate energy/fuel 
consumption and emissions generation rates to average travel speeds, using piecewise functions to 
cover the possible range of speeds. The chosen functions are either power functions or polynomials. 
The generic form of the speed correction function is, for the energy/fuel consumption factor ρrs for 
fuel type s for a given vehicle class/subclass r, 
 

=)(vrsρ  )(1 vz rs  v0 ≤ v < v1 

 )(2 vz rs  v1 ≤ v ≤ v2 

 
where 
 

n
rs Kvvz −=)(α  or 2)( CvBvAvz rs ++=α   

 
where v is the average travel speed and K, n, A, B and C are constants. In the generic model 
presented in this appendix, v is taken to be the average link travel speed. Similar models are also 
available for the pollutant emissions of interest.  
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SUMMARY & RECOMMENDATIONS 

In this paper the author undertook a review of papers published over the last six years 
to understand and summarise the current focus of research in water demand 
forecasting (WDF).  The author also conducted a survey and a number of interviews 
with water utility companies to understand current practice in industry. From this 
research it is recommended: 

1. Research is undertaken to model changing human behaviour  
2. A method of quantifying uncertainty is included in WDF models.  

 

 

 

 

INTRODUCTION 

 

Water, water, every where, nor any drop to drink" 

  (from the ‘Rime of the  Ancyent Marinere’, Samuel Taylor Coleridge) 

 

The RP2002 ETWW (Energy, Transport, Waste & Water) projects aim is to develop 
tools for the integrated demand forecasting of energy, transport, waste & water of city 
precincts.  This paper provides a contemporary summary of the methods and models 
used for modelling WDF.   It focuses primarily on current models & methods used in 
Australia for domestic WDF in urban areas with additional information on modelling 
being used abroad.  
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1.0 COMPLEXITY IN DEMAND FORECASTING 

 

Water demand forecasting for domestic use in urban areas is complex because of the 
high degree of uncertainty around the variables that are the basis for the demand 
analysis. These variables include: 

• Human Behaviour 
• Demographics/Land-use Change 
• Water supply system 
• Source substitution 
• Legislation 

 

1.1 HUMAN BEHAVIOUR 

In interviews with representatives of major urban water utility companies (Sydney 
Water & Thames Water, London) both interviewees concluded that the need for a 
greater understanding of human behaviour and decision making to be incorporated 
into water demand forecasting models. There are models available that simulate 
human behaviour however these all rely on relevant accurate data as an input to get 
any meaningful output and there are a limited number of years of relevant data for 
the Sydney Water region.  Systems like that used by Melbourne Water use agent 
based ANN models to attempt to simulate human behaviour.  However using 
techniques that are meant for manufacturing to predict human behaviour ultimately 
cannot be that accurate because of the uncertainty of human behaviour. 

Many of the most recent publications are into Artificial Neural Networks, some using a 
learning algorithm and agent based micro-simulation models Figure 4 suggesting that 
current research is attempting to address this issue.   

In an interview with Fernando Gamboa of Sydney Water he pointed out that the most 
uncertain variable in water demand forecasting is human behaviour (Gamboa, 2013). 
He noted that because the Sydney Water region was in a drought, for approximately 6 
years, the data from this period is not usable given the influence of restrictions on 
people’s water use related behaviour. Mr. Gamboa stated that Sydney Water 
effectively only have about 3-4 years of representative consumption data that can be 
used for forecasting purposes and that demand has changed significantly noting that 
demand has not returned to pre-drought levels. There has been an approximate 30%-
40% reduction in maximum day demand (used for sizing bulk water infrastructure).  A 
combination of factors including; efficient appliances, people not watering gardens, 
people not washing their cars and a decline in demand from heavy industry, likely 
cause this reduction. Concluding that overall the change in human behaviour was the 
primary contributing factor in the reduction of domestic demand.  He noted that 
currently Sydney Water is monitoring for the potential bounce back to pre-drought 
levels.   

Peak-hour forecast has changed and varies in each reservoir zone. Historically during 
summer the peak hour was in the afternoon but now the peak has changed to the 

      

 5 



Jeffrey Cooke Water Demand Forecasting 2013 

morning probably because people are not watering their gardens as much.  There has 
been evidence that customers are also looking at the weather forecast and are 
spreading the demand load over more than one day consequently reducing the 
maximum day and maximum hour demand.  Examples include the hot days 
experienced in January 2013.  A change in people’s behaviour resulted in a huge 
change in water demand simply because of the education of users and the response 
to the supply shortage. This highlights that it is quite possible that this level of 
demand might be maintained and spending money on education could be far more 
cost effective than increasing spending on infrastructure. 

There is an important role for education of water users to understand the 
consequences of their water use practices.  Sydney Water has analysed average day 
demands using end-use data and has estimated how much that change is due to 
changing water use practices and the increases in the efficiency of water using 
appliances. They do not yet have the requisite detail to do this for the changes in peak 
demand.  Before the last drought, peak day demand was usually around double 
average day demand so predicting the maximum day demand could be reasonably 
predicted using this assumption. The reliance on this simple estimation however is no 
longer valid. Peak day used to be calculated by doubling the average day demand but 
now it has changed significantly and can be as low as 1.4 to 1.6 depending on the 
location (reservoir zone). 

Even areas serviced by both recycled and drinking water are showing a drop even 
though restrictions did not apply to on recycled water use. This may be because they 
would have been affected by the broader water education campaigns and/or they 
have responded to the pricing change for recycled water. 

It was suggested that surveys of water use of household typologies and demographic 
typologies as ‘focus groups’ might help understand changing behaviour.  Kate Beatty 
of Sydney Water said that better understanding of customers was a focus of the newly 
developed Customer Value and Research Strategies in the Business Strategy & 
Resilience (BSR) division at Sydney Water but it may be some years before meaningful 
results were available in this area. 

 

1.2 DEMOGRAPHICS & LAND USE CHANGE 

In an interview with Fernando Gamboa he stated that water demand forecasts at 
Sydney Water use the population forecasts prepared by the Department of Planning in 
the form of the Metropolitan Development Plan (MDP). They receive almost monthly 
updates that can make developing a water demand forecast more complex because 
changes in planning policy have a major effect on water demand forecasting for 
individual supply (distribution) systems. 

Population growth has a very large influence on water demand but is also one of the 
more certain influences. For network system planning, Sydney Water is now looking at 
the past 3 years of water demand data for an area and if that area is likely to have a 
10% increase in population then water demand should increase by 10%.  But 
changing human behaviour could have an effect on this calculation as described in 
the previous section. 
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Preliminary high-level data on BASIX2 houses showed that on average they were using 
the same as non-BASIX houses, however if you took a snapshot of houses before the 
introduction of BASIX and those after, BASIX houses were using less water.  But the 
reduction could be to do with lot sizes becoming smaller and increasing density.  
Relatively recent changes by the Department of Planning to allow Complying 
Development Certificates in lieu of a Development Approval could be increasing the 
density of city area, reducing lot sizes and decreasing demand3.  Therefore changes in 
planning policy can potentially have a significant effect on water demand, and the 
area where water demand originates. The new focus on precinct planning is driving 
the need for better precinct planning tools. (Miller, 2013).  

  

1.3 WATER SUPPLY SYSTEM - SYDNEY 

As stated by Fernando Gamboa of Sydney Water if we can achieve a better water 
demand forecasting model and have increased certainty as to where they have to 
supply water there are potentially large saving on infrastructure costs (Gamboa, 
2013).  

As one example Sydney Water supply water to and area of approximately 12,700sq 
km and it is critical that they know where housing and industry will be located to be 
able to build the infrastructure to meet demand (Miller, 2013).   

Changes in planning policy4 can have a major effect on infrastructure planning by 
changing the location of planned new housing and therefore moving demand. The 
change in location of demand and subsequently infrastructure is driven by a number 
of factors other than planning policy; changing consumer preference and consumer 
demand drive it.  Throughout the 1970’s and 1980’s the model for urban 
development was lateral expansion of the city building more housing on greenfield 
sites on the periphery of the city.  The land costs are cheaper but the infrastructure 
cost to supply amenity are very large.  Since the 1990’s there has been a change in 
consumer preference with people preferring to live closer to the inner city rather than 
incur a long commute to work.  This has led to a greater amount of urban infill on 
brownfield sites linking into existing infrastructure; reducing infrastructure costs.  
Changing taxation policy has also contributed creating a new investor market driving 
demand for denser apartment precincts.  These changes in policy and taxation cause 
subsequent change in where infrastructure needs to be provided.  One strategy for 
dealing with change is to use more decentralised systems, allowing for storm water to 
be re-used within a precinct, similarly power generation can be decentralised to a 
precinct scale moving the cost for infrastructure provision from the public utility to the 
private developer. 

2 Basix is a NSW Government initiative that sets minimum standards for reducing energy and 
water use in houses www.basix.nsw.gov.au. 
3 In NSW if your site area and proposed development are with a template size a shape one can 
opt for a Complying Development Certificate (CDC) rather than seek approval from council with 
a Development Approval (DA). The approval takes 10 days. 
http://housingcode.planning.nsw.gov.au/ 
4 On March 16 2013 Urban Activation Precincts were legislated as a method of housing delivery 
and stimulating employment, focusing on 8 key locations close to public transport nodes 
www.planning.nsw.gov.au 
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Figure 1 Sydney Water Area of Responsibility from Sydney Water website www.sydneywater.com.au 

Adrian Miller stated that Sydney water are currently planning infrastructure so that it 
can adapt to change, this adds some cost but means that a failure of supply and risk 
of over-investment is less likely. 
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Local councils own the majority of the storm water system, which adds an additional 
level of complexity for integration with the overall water system (Gamboa, 2013).  
There are a number of cases in Sydney where stormwater has been used and 
recycled.  This is now happening in most major development s with the collection of 
rainwater before it is lost down the drain. 

 

1.4 SOURCE SUBSTITUTION 

As mentioned in the previous section one potential method of addressing water 
supply is to use a decentralised supply and source substitution.  This has the potential 
to delay the need for single major infrastructure investments and somewhat reduce 
the need for de-salination plants.  

The introduction of rainwater tanks particularly with the advent of BASIX in NSW has 
been a major driver for the inclusion of source substitution in housing. The resulting 
impact on demand is variable. As previously mentioned, data on BASIX houses 
showed that on average they were using around the same as non-BASIX houses, 
however if you take a snapshot of houses just before the introduction of BASIX and 
those after, BASIX houses are using less water (Gamboa, 2013). 

Precincts can be planned with two systems of supply, potable and a non-potable 
recycled water system. This has already been done in some new precinct 
developments, usually for landscape irrigation, reducing the demand on potable 
water. Wastewater Treatment Plants (WWTP) produced by companies such as Eloy 
water 5 are being used for small homes and residential precincts to treat wastewater 
(blackwater) in a de-centralised way closer to the source of the wastewater.  The 
treated wastewater can be used for toilet flushing or irrigation and with further 
treatment can be ‘Class A’ (under AS 1546.1) potable water. These systems will 
increasingly reduce water demand (Printant, 2013).  

 

  

5 Eloy water are a Belgian company specialising in water treatment and make water treatment 
products for smaller scale treatment plants  http://eloywater-au.cd.epic.net/ 
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2.0 LITERATURE REVIEW OF MODEL TYPES 

A literature review matrix of papers published from 2007 to 2013 was created to 
analyse the current research in water demand modelling see Appendix. 

2.1 MODEL & METHOD TYPES OVERVIEW 

 

Figure 2 Model Types (Billings & Jones, 2008, pp. 31-32) 

 

Water demand forecasting model methods can be broadly categorised in two main 
groups: 

1. Bottom up (End user data) 
2. Top Down (Statistical analysis) 

Within these broad groupings these can be further dis-aggregated into various end-
user models and statistical models and combinations of both.  

The complexity of the model or the requirement for a complex model is based on 
need; for example Tasmanian Water has an adequate supply of water and very slowly 
growing population so there is no pressure on water supply and therefore a simple 
projection of historic water demand data is all that is required.  The usual water 
demand-forecasting models undertaken by water utility companies are listed in Figure 
2 and various methods are used to create the most accurate model to predict 
demand. 

One such model currently being used by Melbourne Water and developed by ISD 
Analytics software incorporates micro simulation of human behaviour, incorporating 
appliances and products used, demographic typology, household typology etc. The 
model uses a bottom up approach combined with a top down approach.  This 
software will be discussed in more detail later in this paper.  The majority of water 
utility companies currently use a top down approach using statistical projections of 

Annual per capita water-demand forecasts  

Annual water-demand forecasts by major customer 
class 

Peak-day forecasts 

Monthly system water-demand forecasts 

Daily water-demand forecasts 

Revenue forecasts linked with water-demand forecasts 
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historical data to identify trends and project future demands Figure 4.  However use of 
historical data alone does not account for more sudden changes, including changes in 
human behaviour.  

There are numerous forecasting methods and some of the most common methods 
can be seen in Figure 3. Qi & Chang (2011) categorised six approaches that include: 

 

Figure 3 Forecasting Methods amalgamation of (Billings & Jones, 2008, p. 34) & (Qi & Chang, 2011, pp. 
1629-1634) 

 

Multivariate regression analyses (statistical) 

This is a more traditional approach and can be used for short and long term 
projections. Long-term forecasts are primarily based on population growth as a 
variable and shorter term forecasts can be corrected by the introduction of other 
variables, such as temperature or precipitation (Qi & Chang, 2011, pp. 1629 -1634). 

Time series analyses 

Uses the statistical abstraction of trends that contribute to water demand and may 
include analyses of long, short and cyclical trends.  It has been widely used for short-
term water demand forecasts (Qi & Chang, 2011, p. 1629). 

Computer intelligence models 

This is a broad heading that covers a number of methods including: Artificial Neural 
Networks (often in combination with another method), fuzzy logic and agent based 

Subjective  
•Expert opinion 
•Delphi Methods 
•alternate scenario building 
•surveys 

Extrapolation (Statistical) 
•averaging 
•Time series / Trend analysis 
•Exponential smoothing 
•Box-Jenkins/ARIMA (autoregressive integrated moving average) 

Multivariate regression methods (Statistical) 
•Normally carried out on the statistical relationship between water demand and some explanitory variable 
•Can be used for both short and long term demand forecasting 

Monte Carlo Simulations 
•Forecast uncertainty 
•Water demand variation on a per capita basis 

Computational intelligence methods  
•Artificial Neural Networks (ANN) 
•Fuzzy logic 
•Agent based modelling 

System Dynamics methods  
•Well developed tool, describes system behaviour with feedback loops 
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models.  These methods are useful for simulating complex systems and historical 
data are used to train a learning algorithm until it reaches acceptable accuracy. 

Hybrid approaches 

This approach integrates a number of models to attain a greater accuracy than one 
model alone(Qi & Chang, 2011, p. 1629). 

Monte Carlo Simulations 

Using Monte Carlo Algorithms allows modellers to quantify forecast uncertainty. This is 
the approach recommended by Ross Henderson of Thames Water (Henderson, 
2013). This method can be used in conjunction with other modelling methods to give 
an understanding of the uncertainty attached to any forecast. 

System dynamics models 

These models describe systems behaviours including feedback loops to gain accurate 
forecasts because it incorporates the complex interactions between systems.  It is a 
method that has been supported by Qi & Chang (2011).   

 

2.2 CURRENT RESEARCH 

A review of papers published on the topic of water demand forecasting between 2007 
and 2013 was conducted and the results are in the Appendices.  As can be seen from 
Figure 4 between the years 2007 to 2013 the greatest amount of research has been 
into regression based methods and neural network based methods.  There has been 
less research conducted into methods incorporating Monte Carlo analyses, system 
dynamics models or scenario based modelling where there is a greater gap in current 
research.  

Of the current research reviewed a number of papers are of interest for potential 
application to water modelling at a precinct level. In their review of current research 
Donkor et al. emphasis the importance of including quantifying uncertainty in any 
model, this is corroborated by Ross Henderson of Thames Water who also 
emphasised the importance of quantifying uncertainty through the use of Monte Carlo 
Algorithms (Henderson, 2013) (Donkor, et al., 2012, p. 25).  Cutore et al. use a ANN 
and Neuro Fuzzy logic to quantify uncertainty in their study at city scale and found 
similar performance between Bayesian ANN, Regression & Adaptive Neuro-fuzzy 
models (Cutore, Campisano, Kapelan, Modica, & Savic, 2008).  Recent regression 
methods used by Lee et al. also included a probability density function of water 
consumption (Lee, Wentz, & Gober, 2010). 

A large number of papers surveyed researched Artificial Neural Networks (ANN) 
models but the results of their effectiveness are mixed.  Research conducted by 
Bennett et al. in South East Queensland used end use data to predict water demand 
finding an ANN with Hidden Layer Sigmoid Activation Linearly Activation Output most 
accurate. However Herrera, Manuel et al. concluded that ANN models performed 
poorly and that support vector regression models were more reliable (Herrera, Torgo, 
Izquierdo, & Pérez-García, 2010).  The primary issue when using ANN model is the 
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large historic data set they require for validation. To be useful for precinct modelling 
data sets would be required for each region the tool was to be used in order to 
validate its output.  This would be complex to apply to different precincts.   

 

Figure 4:  Research papers on water demand forecasting by method, published 2007 - 2013 

One model research by Adamowski et al. used an ANN model in combination with a 
regression model to forecast short-term water demands in the city gardens in Nicosia, 
Cyprus.  They found that ANN models could be more accurate that regression models 
alone in predicting peak water demand (Adamowski & Karapataki, 2010).   Andrew 
Bovis at Sydney Water is currently researching peak hour demand looking at climate 
change and other variables.. Ghassi et al used a combination of time series data and 
Neural Networks for daily water demand forecasting and reported a 99% accuracy 
(Ghiassi, Zimbra, & Saidane, 2008).  

Qi et al. attempted to include for externalities in water demand forecasting including 
economic impacts on long term water demand using a System Dynamics Model (Qi & 
Chang, 2011) .  This could be of interest to the ETWW project as one method of 
integrating water forecasting models with other variables from external models. 

The primary issue with these more complex modelling methods is that they require 
specialist personnel to input and interpret the data and in the case of ANN methods 
they require a good historic data set to validate and calibrate the ANN algorithm.  The 
majority of utility companies in Australia surveyed used far simpler statistical methods 
(see Figure 5) like regression analysis because there is no need for a complex method 
or to invest in specialist software and staff. 

One interesting study conducted by Polebitski et al. used three regression methods to 
improve water demand forecasts at the census area scale allowing for the spatially 
distributed demands within a system.  This could be used for long or short term 
forecasts and may be a more suitable model for precinct level modelling but it does 
require more disaggregated data than is usually available (Polebitski & Palmer, 
2010). 
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2.3 VIEW FROM THE COAL FACE 

 

The author conducted a number of interviews with the water demand forecast 
modellers for Sydney Water and Thames Water (London) to get an understanding of 
what water utility companies require. 

A Questionnaire (see Appendix A) was sent to a number of water utility companies to 
ascertain the current state of water demand forecasting in Australia    

State and 
organisation 

WDF under-
taken? 

Basis of 
model or data 

Mathematical 
Basis 

Time 
Horizon 

References & 
Comments 

New South 
Wales, 
Sydney Water 

Yes Top-down & 
bottom up, 
Panel data 
econometric 
models 1-5 
years. Beyond 
5 years, end 
use modelling 
and trend 
analysis (see 
appendix) 

Econometric and 
end use 
forecasting 
(appliance stock 
models use 
various 
mathematical 
methods). 

5 – 10 – 
50 years 
 

Beatty 2013, 
Gamboa, 
2013), (Miller, 
2013), 
see appendix 

South 
Australia, SA 
Water 

Yes. 2 
models long 
& short term  

Top-down, 
Historical data 
extrapolated 
based on 
population 
growth etc. 

Statistical: non-
linear regression 
model 

short-term 
7days, 
long-term 
10-25 
years 

Currently 
developing a 
third 
stochastic 
demand 
forecasting 
tool using 
POAMA data 
to forecast 
6month -
2years 

Tasmania, 
TasWater 

Partly for 
infrastructure 

Top-down, 
Historic data 

   

Victoria, 
Melbourne 
Water 

Yes Top-down & 
bottom up 

No response No 
response 

 

Western 
Australia, 
Water 
Corporation 

Yes.  Top-down, 
Approach 1 
Identifying 
trends and 
extrapolate 
from data. 
Approach 2 
Demand = 
Population x 
per capita 
consumption 

Statistical Short (1-2 
years), 
Medium 
(up to 
2030) 
Long term 
(50 years) 

Trialling iSDP 
model 
developed by 
Institute of 
Sustainable 
Futures. But 
no advantage 
found. 

Figure 5 Survey of current water demand forecasting6 

From the sample of utility companies that responded to our survey questionnaire the 
specific model type varied due to geographical scale, local regulatory requirements, 
the available data and human resources available to undertake the analysis. Overall 
the majority of water utilities companies model at the Macro scale (top down).  Ross 
Henderson of Thames Water in London stated, ‘econometric models alone are of little 

6 A number of utilities did not respond in time for inclusion in this report 
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use for domestic water demand forecasting and a micro-component model coupled 
with a probability density function is required to give results meaning’ (Henderson, 
2013). 

Fernando Gamboa is a Strategist responsible for water demand forecasting for 
system planning at Sydney Water.  In an interview with Fernando he stated that the 
water demands are an input to hydraulic models that are used for analysing servicing 
options (Gamboa, 2013).  He stated that Sydney Water have experimented with a 
number of demand modelling techniques including using the results of smart 
metering and end-use modelling etc. and concluded that for network planning and 
infrastructure sizing at a delivery system level, the simpler the model the better.  The 
Growth Servicing Strategies that Sydney Water creates are reviewed every 5 years so 
it allows for re-alignments to be made and infrastructure can be built with the caveat 
that it may be upgraded if required to meet demand and it can be re-aligned at a later 
date.  Generally, Growth Servicing Strategies would be robust enough for 15 years into 
the future. 

Thames Water do similar analysis but in an interview with Ross Henderson (the 
mathematical modeller for Thames Water) he felt that there were two main aspects 
needed to be added to water demand forecasting modelling methods (Henderson, 
2013): 

1. Inclusion of a method of quantifying uncertainty, a Monte Carlo Algorithm  
2. As previously stated, a better model of changing human behaviour  

A more accurate water demand model could help reduce infrastructure size, cost and 
carbon footprint. As precinct modelling is primarily about infrastructure investment 
and Sydney Water currently do a trade-off analysis to calculate risk and reward of 
infrastructure investment and as a part of that energy use is considered and carbon 
foot print could also be considered although currently usually it comes down to what it 
the cheapest option.  However, with the advent of a price on CO2 it maybe that the 
C02 cost of the infrastructure will be more important in the pricing.  

  

2.4 WATER DEMAND FORECASTING SOFTWARE USED BY UTILITIES 

 

A number of software packages are used currently by water utilities and these are 
summarised in Figure 6.  Sydney Water currently uses Innovyze software for 
pressurised water hydraulic analysis that has a number of different sections 
dedicated to different hydraulic needs.  The current software in use by Sydney Water 
has the capability to give a carbon footprint output but it is not currently being used, it 
could be used as part of the calculation when investigating different scenarios for 
water infrastructure. 

Melbourne water use SimulAlt water forecasting software that uses both a top down 
and bottom up approach and a computer learning ANN component to simulate human 
behaviour using an agent-based model.  
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IWR-Main was developed by the US Dept. of Energy and is used by water utility 
companies in southern California. 

DSS software developed by Maddeus Water Management is used by water utility 
companies in California as an end use based least cost planning tool for long term 
water demand forecasting for infrastructure. 

Forecast Pro is generic software used in many areas of business and can be used to 
perform a number of statistical forecasts on any data. 

 

 

Figure 6 – Examples of software that incorporate or provide water demand forecasts 

 

2.5 MOST RELEVANT MODELS FOR PRECINCT MODELLING  

 

The most relevant model & method for precinct modelling will be those used for sizing 
precinct infrastructure. Peak-day forecast is most important for infrastructure storing 
and transfer capacity (Gamboa, 2013).  Models such as Polebitski et al. (2010) could 
be adapted for precinct modelling to capture both long term and short term forecasts 
while quantifying uncertainty (Polebitski & Palmer, 2010).  A model that can be used 
for short-term peak-day forecasting is most appropriate for precinct modelling and 
could be a top down model capable of short & long term forecasts. 

Innovyze (formerly Wallingford Software) 
• Demand Watch - for urban water demand forecasting. Uses historical demand data, time series autoregression & Fourier Trans for 

short-term water demand forecasts 
• Adaptive demand forecasting updated in real-time 
• Included in a suite of software for hydrology: InfoWater, InfoWorks WS, InfoWorks CS, InfoWorks SD, InofWorks RS, FloodWorks 
• http://www.innovyze.com/ 

SimulAlt Water Forecasting & Barwon Model Configuration (intelligent software) 
• Does NOT rely on historical data. 
• Micro-Simulation model includes; agent based modelling, micro-economics, cognitive reasoning 
• Bottom up approach 
• Includes human behaviour / consumer model 
• Allows for senario testing  
• http://www.isdanalytics.com 

IWR-MAIN 
• Sectorial forecast software based on US historial data. 
• Used by Metropolitain Water District of Southern California (Billings & Jones, 2008, p. 33) 
• Provides water demand forecasts disaggregated by sector & time periods 
• Can be used to test differnt senarios 
• Designed by US Dept of Energy 
• http://apps1.eere.energy.gov/buildings/tools_directory/software.cfm/ID=74/pagename=alpha_list 

Decision Support System (DSS) Model 
• Least cost planning demand management decision support system 
• Top  down & bottom up to calibrate end-use models 
• Developed by Maddaus Water Management California 
• Microsoft Excel Based Software  (Billings & Jones, 2008, p. 33) 
• Long-term forecasts can be developed for 10 to 30 years 

Forecast Pro 
• Generic forecasting software used in many areas of business 
• Statistical basis, uses various methodologies, inlcuding; Expert selection, Exponential smoothing, Box-Jenkins, Dynamic regression, 

Event models, Multiple level models, seasonal simplification. 
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3.0 CONCLUSION 

In conclusion, water demand forecasting is a complex subject and no singular 
methodology is currently used for all water demand forecasts.   The challenges to 
developing an integrated model for water demand forecasting include: 

1. A better model of changing human behaviour. 
2. The inclusion of a method of quantifying uncertainty possibly by using Monte-

Carlo Algorithms. 

 

 

4.0 METHODOLOGY 

 

The author undertook a survey of Australian utility companies and interviewed 
industry representatives in Sydney Water and Thames Water to ascertain the current 
state of WDF in industry (see Figure 5 & appendixes).  

The survey questionnaire was sent to: 

• ACTEW water (ACT) 
• Sydney Water (NSW) 
• Hunter Water (NSW) 
• Sydney Catchment Authority (NSW) 
• Power Water (NT) 
• SEQ (Queensland) 
• SA water (SA) 
• TasWater (Tasmania) 
• Melbourne Water (Vic) 
• Water Corporation (WA) 

Structured interviews were undertaken with members of industry and their responses 
recorded electronically and in writing. 

A survey of current research was undertaken by searching all papers published on the 
topic of WDF and the results compiled in a literature review matrix (see appendix). 
These were then cross tabulated (Figure 4) by WDF model type to understand where 
most research is being done and identify gaps in current research. 
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6.0 APPENDICES 

APPENDIX A: Literature Review Matrix in Excel format 

APPENDIX B: Questionnaires 

SA Water 

Models for Water Demand Forecasting Questionnaire 

My research is initially in water demand forecasting and subsequently the carbon 
footprint of the provision of that water (including infrastructure). My study is part of a 
larger collaborative study involving a number of stakeholders including the Centre for 
Low Carbon Living CRC and the Water Research Centre at UNSW more information on 
the project is available here.   

As an initial step I am trying to gather as much information as possible on the current 
state of water demand forecasting and the models used in Australia. If you would 
answer the following questions I would be very grateful. 

1. Do you undertake any water demand forecasting? If so what models do you use? (e.g. 
System Dynamics Model, Simulation Model, Steady-state and dynamic model, Operational 
research models, Expert systems, Hybrid expert systems)  

Yes, SA Water currently forecasts water demand for two main purposes. Each purpose has its 
own model, but both are operational research models. One model extrapolates historical 
demand by future population growth over the long term and the other is a non-linear regression 
model that tries to predict demand based on forecast climate information. 

2. Briefly explain the water demand-forecasting model that you use and why you use this 
model? 

The two models are used to forecast demand for different time periods and steps. The long-
term demand forecasting model used by SA Water is an in-house model for likely future 
demand growth. The model looks at historical annual demands and extrapolates them based 
on projected growth in residential, commercial and other customers and incorporates pricing 
and weather factors.  

The short-term demand forecast model uses climate data and historical demand to calibrate a 
model. Forecast climate data is then input into the model to produce a forecast of future 
demand 

3. How do you undertake the modelling and what is the mathematical basis of the model (s)?  

The Long-term model is contained within spreadsheets by users as required. 

Short term modelling is conducted using an automated calculation engine to calculate the 
forecast demand on a daily basis. The short-term model is recalibrated as required using 
historical data sets. 

4. What is the time horizon for the model and what is the regional coverage?   

Long term demand models are used to forecast over a 10 to 25 year horizon across the 
breadth of South Australia. The short term demand model forecasts a period of up to 7 days 
over Metropolitan Adelaide.  
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5. If possible is there any information on your water demand forecasting that you can share for 
my research? (I/we are happy to sign a confidentiality agreement if required) 

Subject to a confidentiality agreement, SA Water would consider providing information to 
support the research, particularly if research outcomes are able to provide insight or add value 
to SA Water’s existing forecasting systems. 

6. Do you have any suggestions of any current research/work I should be aware of? 

SA Water is in the process of developing a third, stochastic demand forecasting tool utilising 
POAMA data to produce forecasts for a 6 month to 2 year horizon for the Metropolitan Adelaide 
region. 

 

 

WA Water 

Models for Water Demand Forecasting Questionnaire 

My research is initially in water demand forecasting and subsequently the carbon 
footprint of the provision of that water (including infrastructure). My study is part of a 
larger collaborative study involving a number of stakeholders including the Centre for 
Low Carbon Living CRC and the Water Research Centre at UNSW more information on 
the project is available here.   

As an initial step I am trying to gather as much information as possible on the current 
state of water demand forecasting and the models used in Australia. If you would 
answer the following questions I would be very grateful. 

1. Do you undertake any water demand forecasting? If so what models do you use? (e.g. 
System Dynamics Model, Simulation Model, Steady-state and dynamic model, Operational 
research models, Expert systems, Hybrid expert systems) 

Response from Water Corporation of WA: Yes we do undertake water demand forecasting 

There are 3 Modes we consider: Short (1-2yrs), Medium (Up to 2030) and Long term (50yrs).  
But sometimes we do not distinguish between Medium and Long term. 

We do not use any commercial or other so called mathematical models.  We had been trialling 
the iSDP model by Institute of Sustainable Futures but did not see any big advantage of using it 
as we do not collect the data in the form that can be fed into the model. In essence we do not 
see the effort involved in keeping the model functional as it does not give us any better results 
than what we get by working out from basics. And we do not keep a dedicated trained person 
for the use of the models. 

Our approach is from basics.  The approach we use can be applied by an engineer easily. The 
methods we use had given successful forecasts in the past (within 3% of actuals).  This suits 
our needs and we are not convinced that the computer models out there can predict better 
than 3%. 

2. Briefly explain the water demand-forecasting model that you use and why you use this 
model? 

Approach 1: Identify the recent trends and extrapolate with the information we gather from 
other departments, shires etc. 
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Approach 2: Demand = Population * per capita consumption. (We forecast population and 
define the future per capita targets based on other proposed water efficiency programs, 
demand management strategies, Government requirements etc) 

We also analyze: 

• Daily water supply for Perth for tracking purposes 
• Past supply data sector by sector to make a well informed forecasting. 

3. How do you undertake the modeling and what is the mathematical basis of the model (s)?  

See the above answers 

4. What is the time horizon for the model and what is the regional coverage?   

We operate in many country towns, minor cities and Major cities in Western Australia.  The 
Biggest one is the IWSS (Integrated Water Supply Scheme) supplying Perth, Mandurah and 
Goldfields and Agriculture. 

Note: We do not use models 

5. If possible is there any information on your water demand forecasting that you can share for 
my research? (I/we are happy to sign a confidentiality agreement if required)  

If requested we could provide a technical note that has been prepared for the IWSS.  But we 
would not wish for this to be published or disclosed without written permission from us first. 

6. Do you have any suggestions of any current research/work I should be aware of? 

 The work by Institute of Sustainable Future CSIRO and Sydney Water 

 

 

Tas Water Response  

(note TasWater chose not to fill in the questionnaire but replied in an email) 

Hi Jeff, 
  
We don’t do any special demand forecasting with fancy models etc. We base our 
assumptions on historical data, which has proved accurate enough for us. 
  
Note that by and large, Tasmania and southern Tasmania in particular don’t have an acute 
supply problem, i.e. a shortage of water unlike other parts of Australia, we have plenty of 
surface water, our supply issues are more infrastructure related. Therefore our modelling is 
much more hydraulic/engineering modelling that we use to determine how big do our 
pumps need to be, how much water can we squirt through a pipe etc. 
  
So what we tend to do is to make some assumption about demand and then use these 
assumptions (backed up by historical data) to run our hydraulic models to inform our 
forward investment in pumps and pumps etc. 
  
With that in mind, and looking at your questionnaire, I’m not sure if the questions are 
relevant to our activities. 
  
I can advise you of a CO2e per ML of water once we run the carbon numbers for this year, 
which is in about 2 weeks time. 
In terms of embodied carbon in our infrastructure e.g. the concrete, the steel, etc we 
haven’t done much work on this and at present there is not a strong driver to do so. Suffice 
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to say that with the high percentage of renewable power available in Tassie, we have a 
pretty low carbon emissions regime relative to other water corporations and there’s not a 
huge driver for us to reduce our emissions or measure them better without some sort of 
financial push such as a Carbon price that hurts. Currently it doesn’t hurt at all. 
  
In terms of carbon footprint for new precincts I’m guessing you’ll be looking more at the 
embodied carbon of the infrastructure rather than the ongoing carbon required to push the 
water & sewage around. I cant offer you much in that space more than the commonly 
available literature. 
  
Happy to discuss if you want to give me a call. See numbers below. 
  
Cheers, 
  
Lance 
  
  
Lance Stapleton 
Manager - Scientific Services (South) 
  
TasWater 
  
Tel         (03) 6237 8293 
Mobile   0408 175 522 
Fax       1300 862 066            
Post      GPO Box 1393, Hobart TAS 7001 
Street    169 Main Rd, Moonah, 7009 

Email     lance.stapleton@taswater.com.au 

 

 

 

7.0 GLOSSARY 

WDF – Water demand forecasting 

DSS – Decision support system 

ANN – Artificial Neural Network 
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Water demand 
forecasting in practice 
Fernando Gamboa 
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Overview 

Sources of data used as inputs in 
forecasting 

Demand forecasting 

Current challenges 

Planning approach 

Tools 

Future focus areas 

 
 



Sources of data used as inputs in forecasting 

Population forecasts from the DoPI 
(lot level resolution) 

Historical consumption trends 

Census data 

Development applications 
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Demand Forecasting 
Greenfield developments 

Analyse and derive demand rates for zones in the vicinity 

Consider level of BASIX coverage and adjust as required 

Adopt demand rates and model 

Carry out sensitivity assessment to develop risk profile 

Infill developments 

Analyse and derive demand rates within the zone 

Adjust for BASIX 

Adopt demand rates and model 

Carry out sensitivity assessment to develop risk profile 
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Forecasting challenges 
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Planning 
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Define context specific  
objectives, including human    
and environmental needs   

Creative options generation    
for water supply and     
wastewater services   

Select criteria (mandatory &  
desirable)   

Reduce number of options by  
constraints - driven screening in  
agreement with stakeholders   

Generate  a   
performance matrix   

Identify preferred option by  
applying MCA approach to  

per formance matrix and  
stakeholder preferences   

Phase 1   
Define objectives   

Phase 2   
Generate options   

Phase 3   
Select sustainability criteria   

Phase 4   
Screen options   

Phase 5   
Perform detailed options   
assessment   

Phase 6   
Recommend preferred option   

Possible Iterations   



Tools - Energy and Carbon 
Energy and Carbon Estimator (ECE) 
– Estimates the life-cycle greenhouse gas emissions 
– Life-cycle energy costs for water and wastewater assets 

– Construction 
– Operations 
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Tools – Construction/Operating Costing 
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Capital costing tool 

Economic options evaluation 
– Costs and benefits of investment options, using discounted cash 

flow (DCF) techniques. 
– B/C 

 



Hydraulic Modelling 
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Future focus areas 
Continue to refreshing the planning process 

Continue to monitor consumption trends 
– Improve resolution (smart metering) 

Improve understanding of the dynamics in changes in 
behaviour 

10 
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Questions? 
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Waste Demand Forecasting
CRC	  for	  Low	  Carbon	  Living,	  Program	  2:	  Low	  Carbon	  Precincts	  	  
	  
24th	  September	  2013	  
	  
Steffen	  Lehmann,	  AAq	  Zaman,	  He	  He,	  John	  Devlin	  
	  
Presented	  by	  John	  Devlin	  
	  



what is zero waste?



where do we 
measure waste?
 



2.5Kg

Amount of waste produced by 
average Adelaide-ian each day
(2012)

Is this accurate?
What does it mean?



LOCAL GLOBAL





AVOID�
REDUCE
REUSE
RECYCLE
RECOVER
TREAT
COLLECT
DISCARD
POLLUTE



“Waste is… 
 
…the absence of value” 

Dr. David Halperin 



Waste is 
subjective and contextual

>

What role does 
information and infrastructure 
play in waste creation?



AVOID�
REDUCE
REUSE
RECYCLE
RECOVER
TREAT
COLLECT
DISCARD
POLLUTE





REUSE  x1000 better than
RECYCLE
in terms of waste reduction



~70%

Diversion from landfill 
(SA, 2012) 


Is this accurate?
What does it mean?






IS THERE A DEMAND
FOR WASTE?�

�
�




“Waste is… 
 
…a misallocated resource” 

Prof. Steffen Lehmann 



Waste can be a combination of many resources…
  …a compromise that reveals priorities… 







WASTE DEMAND


RESOURCE DEMAND

�
�
�




So… is


ETW…M


more appropriate?



RESOURCE DEMAND
�

IS DEPENDENT ON


DESIGN AND BEHAVIOUR�
�
�




What are the barriers to 
long-term forecasting?


MOBILITY
BORDERS

OFFSHORING�
TIME FRAMES�
INNOVATION�

VALUE



PREDICTIVE
EXPLORATORY
PREVENTATIVE
SPECULATIVE
BACKCASTING

What different ways can we 
use the tool?





WASTE AVOIDANCE:


BUILT ENVIRONMENT


LIFESTYLE


MINDSET/PURPOSE

 



SCENARIO A     vs.    SCENARIO B

LOCAL
SELF BUILT

ZERO WASTE
SELF-SUFFICIENT
DECENTRALISED

ADAPTABLE�
NATURAL

AFFORDABLE
HOME

GLOBAL
DEVELOPED
FOR PROFIT

RESOURCE DEPENDENT
CENTRALISED

FIXED�
ARTIFICIAL

MORTGAGED
INVESTMENT

Which scenario seems more “low carbon” or “zero waste”?



Avoidable waste is caused by
a mismatch of intent 
between consumer and producer

>

Who should be using our tool?



ZERO WASTE 
IS A MOVING TARGET*

Real-time data
Feedback

Short-term forecasting
Participatory design

Investment strategies
Governance
Adaptation
Innovation


	ETWW_Workshop_#2_Report_FINAL2
	Acknowledgements
	Workshop Participants

	Contents
	List of Figures
	Introduction
	Dr Adam Berry: Energy Demand Forecasting
	Data Sets
	Modelling and Simulation
	Residential Technology Trends
	A Possible Path Forward
	Discussion on Energy Demand Forecasting

	Dr Nicholas Holyoak: Transportation Demand Forecasting
	Establishing Model Inputs
	Macro-Level Forecast Stages
	Altenative Approachesand Other Considerations
	Discussion

	Professor Michael Taylor: Estimating Precinct Level Carbon Emissions from Transport
	Discussion

	Associate Professor Tommy Weidmann: Review of Water Demand Forecasting
	Types of urban water demand forecasting methods
	Water modelling at a precinct level
	Conclusions

	Mr Fernando Gamboa: Water Demand Forecasting in Practice
	Discussion

	Mr John Devlin: Waste Demand Forecasting
	Discussion

	Associate Professor Tommy Weidmann: Economy-Wide Carbon Accounting
	All Workshop Participants:General Discussion Session
	Scenarios
	Model Framework Development
	Forecasting and Resolution
	Data
	Wastewater

	Conclusions and Synthesis
	References

	AppendixACover
	Appendix A

	Energy_Demand_Forecasting_Approved_for_Distribution
	Contents
	Figures

	53TPart I 53TIntroduction
	1 Introduction
	53TPart II 53TData Sets
	2 Residential Energy Use
	2.1 Solar Cities
	2.2 Low Income Energy Efficiency Program
	2.3 Residential Building Energy Efficiency Standards Repository

	3 Distribution Network Construction
	4 Renewable Energy Data
	5 Demand Management
	6 Greenhouse Gas Emissions Data
	53TPart III 53TModelling and Simulation
	7 Modelling of Precinct Power Flows
	8 Load Forecasting
	9 Modelling of Individual Buildings
	53TPart IV 53TResidential Technology Trends
	10 Solar PV Uptake Behaviour
	11 Electric Vehicle Uptake Behaviour
	53TPart V 53TA Possible Path Forward
	12 Data and Model Fusion
	References

	AppendixBCover
	Appendix B

	Transport Forecasting Summary Paper FINAL2
	AppendixCCover
	Appendix C

	Representing precinct travel demands v3
	AppendixDCover
	Appendix D

	ETWW Report on Water Demand Forecasting - 14Nov13 - final
	0F Acknowledgements
	Summary & Recommendations
	Introduction
	1.0 Complexity in Demand Forecasting
	1.1 Human Behaviour
	1.2 Demographics & land use change
	1.3 Water supply system - Sydney
	1.4 Source substitution

	2.0 Literature Review of Model Types
	2.1 Model & Method Types Overview
	2.2 Current Research
	2.3 View from the coal face
	2.4 Water Demand Forecasting Software Used by Utilities
	2.5 Most relevant models for precinct modelling

	3.0 Conclusion
	4.0 Methodology
	5.0 Bibliography
	6.0 Appendices
	7.0 Glossary

	AppendixECover
	Appendix E

	Low Living Carbon CRC ETWW FG
	Water demand forecasting in practice
	Overview
	Sources of data used as inputs in forecasting
	Demand Forecasting
	Forecasting challenges
	Planning
	Tools - Energy and Carbon
	Tools – Construction/Operating Costing
	Hydraulic Modelling
	Future focus areas
	Questions?

	AppendixFCover
	Appendix F

	ETWW lean slides

