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Executive Summary 

Cool roof technology is known to reduce the cooling energy consumption of conditioned buildings during hot periods, and 
widespread implementation of such roofs in a neighbourhood or precinct can mitigate the urban heat island effect.  
Established building energy modelling techniques are able in principle to predict the benefits of cool roofs due to reduced 
heat transfer through the roof structure.  However, several scientific and industry publications have claimed that 
additional benefits can arise from the reduction in air temperature above cool roofs.  Rooftop heating, ventilation and air-
conditioning (HVAC) equipment energy consumption would be reduced by such an effect, and the efficiency of rooftop 
photovoltaic (PV) panels would be improved. 

A small number of studies have attempted to quantify the effects of cool roofs on above-roof temperature fields and the 
performance of rooftop equipment, but these studies have been relatively small in scope and have produced varying 
results.  It is likely that some such effects exist, that are not currently taken into account in assessments of roof 
performance, but prior to the present project it was not possible to determine whether such effects are significant. 

This report summarises the work carried out under project RP1037, the aim of which was to generate experimental 
evidence, and other data, that may be used to more accurately quantify the benefit of cool roofs to Australian large-
footprint buildings, including the generally unaccounted-for above-roof effects described above.  

Experiments 

Our program of monitoring of air and surface temperatures above three large-footprint shopping centres in NSW, 
Australia, has generated a comprehensive dataset that quantifies the above-roof thermal stratification above these 
buildings over 6-week periods at each building, covering a range of meteorological conditions.   

During the predominately summer monitoring periods, air at elevations between 0.5m and 1.5m above the roof surfaces 
(i.e. air at similar heights above the roofs as rooftop PV panels and HVAC equipment) reached temperatures up to 7°C 
above ambient/freestream conditions measured at 8m above the roofs.  On average, the daytime temperature at such 
locations reached 1.0-2.2°C above ambient/freestream.  Roof surface temperatures were measured that exceeded the 
ambient/freestream temperature by more than 50°C, while the mean roof surface temperature elevation above 
ambient/freestream measured in the middle of the day, i.e. between 11:30 and 12:30 Australian Eastern Standard Time 
(AEST), was 28.2°C at Nowra, 25.1°C at Shellharbour and 13.6°C at Wetherill Park. At night-time, the roof surfaces, and 
the air above them, were consistently several degrees below ambient/freestream. 

Air temperatures measured near the roofs were non-dimensionalised and correlated using the Richardson number; a 
fundamental, non-dimensional, fluid and heat flow parameter. This approach generated a better fundamental 
understanding of how the above-roof air temperatures were dependent on the local meteorological conditions that 
occurred during the experiments 

A new empirical model has been developed, to facilitate the estimation of above-roof air temperatures above large roofs 
for input into Building Performance Simulation software. The empirical model is in the form of a correlation to estimate 
the thermal stratification above a given large roof for a specific set of independent parameters, namely: mean roof 
surface temperature, roof characteristic length, and local ambient/freestream temperature and wind speed. The model 
was able to correlate above-roof temperatures from the experimental dataset with an RMS error of 0.65°C, which is a 
relatively small deviation, given the significant variations in building geometry, building materials, weather conditions and 
surrounding topography involved in the experiments. 

It should be noted, that although this empirical model was developed using well-established fundamental 
characterisations of flow regimes that apply in situations similar the large-footprint buildings of this study (i.e. stable 
natural, stable mixed, forced, unstable mixed and unstable natural convective regimes), the data gathered was for a set 
of particular weather conditions and time of year (summer). The authors are confident that the above-roof temperature 
model is a good representation of above-roof conditions for the type/size of case-study buildings in this project, and for 
the prediction of the impact of above-roof temperatures on cooling energy requirements in relatively warm weather. 

However, care must be taken in applying the same above-roof temperature model to determine changes to heating 
requirements as a function of the radiative heat transfer surface properties of roofs for significantly different weather 
conditions, particularly cold/winter conditions until such time that further experimental evidence can be gathered on 
above-roof temperatures under cold weather conditions to verify, or modify, the current above-roof temperature empirical 
model for low ambient temperatures. 

Comparison of non-dimensional temperatures measured near the inlets of HVAC equipment with those measured further 
from the equipment revealed that air entering the HVAC units tended to deviate from the ambient/freestream 
temperature by a similar magnitude as air at the same height elsewhere, but that it typically did not exhibit the same 
vertical temperature profile that was observed elsewhere.  Enclosures surrounding HVAC equipment may have been the 
primary cause of such deviations from the vertical temperature profile.   



 

RP1037 Final Report  14 

 

PV panels were also found to influence the local temperature field significantly.  Comparison of non-dimensional air 
temperatures measured within arrays of PV panels with those measured above nearby sections of clear roof revealed 
that, during the day, air between the panels (at 0.15m above the roof surface) tended to be significantly hotter than air at 
a similar height elsewhere.  However, the temperature of the air above the panels, at a height of 1.5m, was not seen to 
be influenced significantly by the presence of the PV arrays.   

In addition to the comprehensive temperature measurements described above, point-in-time detailed measurements 
were conducted over 1 to 2 days at each case-study building.  These detailed measurements included: characterisation 
of the up-wind atmospheric boundary layer temperature and velocity profiles; measurement of air velocities close to the 
roof surfaces; thermal imaging of the entire assembly of roof surfaces using a drone-mounted infrared camera; and 
measurement of the roof surface solar reflectance and infrared emittance.   

Optical properties of the roof surfaces on the case study buildings were also measured.  Measured values of solar 
reflectance ranged from 0.26 (for aged bare metal) to 0.61 (for aged field-painted roofing); thermal emittances ranged 
from 0.42 (bare metal) to 0.85 (for pre-painted and field-painted steel).  These values were commensurate with the 
researchers’ previous experience with similar materials.  Data from the velocity measurements and infrared cameras 
were compared to computational fluid dynamics (CFD) simulations, and represent a valuable dataset for future work. 

Computational Fluid Dynamics 

CFD simulations were conducted, to determine whether conventional and commercially available CFD software could 
accurately simulate the challenging flow regimes above-roof temperature fields, and to assess the benefits and 
drawbacks of wall functions in simulations of such flows.  Two test cases were defined, with boundary conditions 
corresponding to points in time at which detailed measurements had been taken at one of the case study buildings under 
different wind and solar radiation conditions; representing two fluid flow fields dominated by mixed and natural 
convection, respectively.  Simulations were conducted using four different analysis techniques of varying complexity: a) 
steady simulations based on the Reynolds-Averaged Navier Stokes (RANS) equations and standard wall functions; b) 
steady simulations based on the RANS equations and wall functions modified according to (Defraeye, Blocken & 
Carmeliet 2011); c) delayed detached eddy simulation (DDES); and d) wall-modelled large eddy simulation (WMLES). 

Results from the CFD simulations revealed that: 

 When comparing the CFD results with the full-scale experimental results, the transient, turbulence-resolving methods 
performed better than the simpler RANS-based approach with unmodified wall functions in the natural convection case, 
but did not perform significantly better in simulations of mixed convection. 

 The wall function modification proposed by Defraeye, Blocken and Carmeliet (2011) produced significantly hotter near-
roof air temperatures than standard wall functions, in both mixed and natural convection cases.  In the mixed convection 
case, this increased the difference between the CFD and experimental results significantly. 

 DDES produced above-roof thermal boundary layers that were thicker than those produced by WMLES in the natural 
convection case, but the two models produced similar results in the mixed convection case.  It is not clear whether this 
was due to the one-equation turbulence model adopted in WMLES, the ability of resolved eddies to intrude into the 
near-wall region in WMLES, or a combination of these two factors. 

 In the natural convection case, all four methods produced lower above-roof air temperatures than were measured. 

 The computational expense of techniques that resolve turbulence all the way to solid boundaries (e.g. large eddy 
simulation or direct numerical simulation) currently render them impracticable for simulations of urban flows using 
computer resources that would be available to most researchers/practitioners. 

Building Performance Simulations 

Building Performance Simulations were conducted for two case-study large-footprint buildings, in seven Australian 
climate zones, with four different roof materials, and two different types of HVAC system.   

The case-study buildings were designed to be simplified representations of an airport and a shopping centre.  
Simulations were conducted with and without the above-roof temperature model that was developed in this study.  The 
simulation results were analysed to determine: i) the building thermal demands and energy consumptions; ii) the 
performance of a cool roof, relative to a bare metal roof; and iii) the importance of above-roof air temperatures in the 
performance of cool roofs. 

Simulation results revealed that the effects of cool roofs, as compared to conventional, or ‘non-cool’, roofs in terms of 
HVAC electricity consumption tended to be underestimated by approximately 50% when near-roof air temperatures were 
not taken into account. 

The annual building thermal demands varied significantly between climate zones and between the two buildings.  The 
airport required more than twice the thermal energy, and tended to require proportionally more cooling, than the 
shopping centre did.  The heating/cooling ratio varied from 0.0 (airport in climate zone 1) to 2.81 (shopping centre in 
climate zone 7).  Annual electricity and gas consumptions were closely aligned with the cooling and heating demands in 
each case. 
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Cool roofs were observed to reduce annual electricity consumption and increase annual gas consumption in all cases, by 
an average of 4.0% and 8.4%, respectively, though the individual changes in consumption were very strongly dependent 
on climate zone. As expected, cool roofs generated significantly great benefits in warmer climates.  The higher 
heating/cooling ratio of the shopping centre caused the magnitude of electricity savings relative to the magnitude of gas 
increases, attributable to the cool roof, to be smaller for that building. 

The relative influence of above-roof air temperature effects on the benefits and ‘penalties’ of the cool roofs varied 
significantly between the different cases, but the effects of the cool roof were consistently increased by such above-roof 
effects.  Electricity savings and gas penalties were predicted for the purpose of comparing the very light-coloured roof to 
the bare metal roof; the relative proportions of savings and penalties varied widely with building type and climate zone.   

The study found that on average conventional building simulation practices, that do not account for above-roof 
temperature effects, would have under-estimated the cooling energy benefits of cool roofs by a factor of approximately 2 
in the cases that were investigated. Cold weather gas penalties were also predicted to be under-estimated without the 
inclusion of the above-roof temperature field in building performance simulations.  

However, as noted in the section above on ‘Experiments’, further work is needed to verify/modify the above-roof 
temperature model of this study to cover winter conditions, so as to ensure that the predicted percentage values of gas 
penalties reported here are representative of colder climates with significant building heating requirements. 

Overall, our results support the assertions of previous researchers who have suggested that the effects of cool roofs on 
near-roof air temperatures, and the consequential effects of these temperatures on the performance of rooftop HVAC 
equipment, need to be taken into account for accurate predictions of cool roof performance relative to ‘non-cool’ roofs. 

BPS was shown to be an important tool in determining the magnitude of the energy demand and savings considering the 
effects of the above-roof temperature field. However, it was found that predicted changes in HVAC energy consumption 
were extremely sensitive to BPS input parameters such as building design details (e.g. window-to-wall ratio), internal 
loads, occupancy and plant schedules. Thus, the BPS results reported herein should not be extrapolated beyond the 
scope of the case study buildings, weather and climate zones modelled in this project. 

Economic Analysis 

An operational cost analysis was conducted, to determine the net effect of electricity savings and gas 
‘penalties’ estimated for cool roofs in the BPS study.  The net effect of the very light-coloured cool roof, 
compared to the bare metal roof, on HVAC running costs was estimated for a range of gas and electricity 
unit prices.  In a similar manner, the greenhouse gas emissions abatement attributable to cool roofs was 
estimated for a range of electricity emissions factors. 

Given the strong sensitivity of BPS to modelling assumptions (e.g. internal loads and usage schedules) and 
the wide variations in such variables across the Australian building stock, results determined for the two-case 
study buildings should not be taken as being directly applicable to specific shopping centres or airports.  In 
addition, roof radiative-optical properties are known to change over time, but such ‘ageing’ was not taken into 
account in the present analysis.   

Nevertheless, the net changes in HVAC running costs and greenhouse gas emissions abatement estimated 
here do give indicative values for large-footprint buildings in seven Australian climate zones.  Modelling 
assumptions made in the present work were almost entirely based on recommendations made in industry 
standards, so the results that were produced are credible representations of simplified real buildings.  
Moreover, the results of the present analysis clearly demonstrate the importance of taking above-roof 
temperature effects into account when evaluating the performance of roofs. 
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1 Introduction 

1.1 Background 

Despite world-class products being manufactured in Australia, cool roof technology is, as yet, greatly under-utilized both 
locally and internationally.  

Large-footprint buildings provide a significant opportunity for market penetration of local cool roof technologies, which will 
open up the cool roof market more generally; as long as the current challenge of lack of rigorous evidence and design 
information can be overcome.  

Building energy modelling software packages, for example, may greatly under-predict the benefit of cool roofs on large-
footprint buildings because they do not account for impact of the elevated temperatures that develop above roofs in 
warm weather conditions. Such elevated temperatures may significantly reduce the performance of roof-mounted 
heating ventilation and air-conditioning (HVAC) plant. However, specification of cool roofs will continue to be hampered 
while predictive modelling of cool roof benefits does not incorporate these phenomena. 

1.2 Project Outline 

Project RP1037 was an activity carried out under the auspices of the Cooperative Research Centre for Low Carbon 
Living, under Program 1: Integrated Building Systems.  The project was intended to help overcome a number of barriers 
that were hindering the wide-scale utilisation of cool roof technology on Australian large-footprint buildings.   

1.2.1 Aims 

The aim of the project was to develop evidence-based cool roof design and cost-benefit calculation resources, mainly 
focussed on large-footprint buildings, and specifically tuned to the needs of Australian industry, i.e. covering Australian 
climate zones, building typologies, construction details, locally produced cool roof products, etc. 

The evidence base and resources developed will allow designers/owners to easily, but rigorously, quantify the costs and 
benefits of cool roof products from the point of view of both ‘passive’ reduction of heat load through the roof and from the 
above-roof temperature field, which may cause HVAC plant located on the roof to consume significantly more energy 
than when a cool roof is employed. The project also examined the possibility that cool roofs may bring additional value to 
roof-mounted photovoltaic (PV) panels as a result of variation in air temperatures above large-footprint building roofs. 

1.2.2 Project Activities 

The project was comprised of four main steps (see Figure 1.1): 

1. A comprehensive review of relevant literature. 

2. Generation of a rigorous evidence base, quantifying air temperatures above large footprint buildings; this activity 
included: 

a. In-situ monitoring of three case study large-footprint buildings; 

b. Detailed point-in-time monitoring at the three case study buildings; 

c. Comparison of various computational fluid dynamics (CFD) techniques, using test cases from the 
experimental campaign; and 

d. Development of an accurate and robust model for the estimation of above-roof temperatures in 
building performance simulations (BPS). 

3. Determination of the overall value proposition of cool roofs to Australian large-footprint buildings, by: 

a. Conducting a comprehensive BPS study, taking into account the effects of the above-roof temperature 
field on rooftop equipment; and 

b. Application of theoretical year-round building energy consumption data, from the BPS study, in a cost-
benefit analysis of cool roof technology in new-build and retrofit scenarios. 

4. Development of prototype decision-support tools for owners of Australian large-footprint buildings, to allow them 
to easily estimate the overall value proposition of cool roof technology in their particular case. 
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Figure 1.1: Schematic outline of the project activities. 

1.2.3 Deliverables 

The project had two primary products:  

 A comprehensive set of cool roof design and cost-benefit calculation resources, focussed on typical large-footprint 
Australian buildings. 

 A rigorous experimental and simulation evidence-base of the impact of cool roof products on building thermal 
performance and the characteristics of the temperature field above large-footprint buildings. 

The above-roof temperature model developed by the project team is another valuable outcome of the project.  This 
model can be applied in future simulation studies, to account for above-roof temperature effects on rooftop equipment. 

1.2.4 Utilisation of Project Outcomes 

The prototype decision-support tools developed by the project will be implemented directly by project partners and key 
stakeholders, BlueScope Steel and Stockland.  Dissemination of explicit and tacit research findings will also be ensured 
by a targeted set of publications and presentations at conferences, workshops, etc.  Communication of project outcomes 
will be co-designed, planned, implemented and monitored with key stakeholders, to maximise the utilisation of project 
outcomes. 
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2 Literature Review 

2.1 Urban Heat Islands 

Interest in cool roof technology has increased substantially in recent years, for use in mitigating the negative effects of 
urban overheating caused by the combined effects of global climate change and the expansion of urban areas. Changes 
in land cover have led to increased heat absorption and storage, increased anthropogenic heat release, and decreased 
evaporative cooling.  Global warming has exacerbated this trend, by increasing the duration, frequency and strength of 
extreme climatic phenomena such as heat waves (Perkins, Alexander & Nairn 2012).  The urban heat island effect has 
been recorded in more than 400 major cities in the world (Santamouris 2015).  Temperature increases of 4–5°C are 
common, and increases of 7–8°C have been reported (Santamouris 2015). 

Such changes in urban climates negatively affect the sustainability and the liveability of cities.  Higher urban 
temperatures significantly increase cooling energy consumption and peak electricity demand (Akbari 2005; Sailor 2002; 
Santamouris 2014; Santamouris et al. 2015). In addition, increased ambient temperatures have been shown to 
contribute to elevate greenhouse gas emissions and air pollution (Stathopoulou et al. 2008; Taha, Douglas & Haney 
1994); and to increase stress, mortality and morbidity rates, especially among vulnerable populations (Baccini et al. 
2008; Pantavou et al. 2011; Sakka et al. 2012; Semenza et al. 1999; Song et al. 2017). 

Extensive research over recent years has identified and tested a wide range of countermeasures to urban overheating, 
including the use of water technologies, reflective materials, greenery, etc. The potential of several mitigation 
technologies to lower ambient temperatures has been evaluated through a large number of projects from various parts of 
the world and various climatic conditions, demonstrating that they can lower average peak temperatures by 2˚C 
(Santamouris et al. 2017a). Materials used in the urban fabric play a very important role in the urban thermal balance; 
especially roofs and pavements, as they represent approximately 60% of the urban fabric (Akbari & Rose 2001a; Akbari 
& Rose 2001b; Akbari, Rose & Taha 2003; Rose, Akbari & Taha 2003).  Such surfaces absorb solar and infrared 
radiation and dissipate part of the accumulated heat through convective and radiative processes to the atmosphere, 
increasing ambient temperature. Thus, the characteristics of the materials used in the urban fabric determine to a high 
degree the thermal performance, energy consumption and comfort conditions of individual buildings as well as thermal 
comfort conditions in open spaces. 

2.2 Cool Roofs 

Cool roofs are characterised by external surfaces  with high solar reflectance (SR) and infrared emittance (ε).  The 
temperature of roof surfaces is highly dependent on these two properties (Bretz & Akbari 1997); ‘cool’ surfaces will 
absorb less heat from the sun and reflect and re-emit more heat to their surroundings than surfaces with lower SR and/or 
ε.  The inclusion of such surfaces in building envelopes can reduce the amount of heat transmitted into the building, and 
decrease the temperature of air in the surrounding outdoor environment. 

 

Figure 2.1: Schematic depiction of the concept underlying cool roofs 

Development of innovative cool roofing materials is ongoing.  Recent advances have involved materials containing 
nanoparticles of TiO2 that remain cooler under the sun and also have anti-polluting, anti-soiling and disinfecting 
properties (Chen & Poon 2009; Diamanti et al. 2013; Fujishima & Zhang 2006; Hüsken & Brouwers 2008; Sugrañez et 
al. 2013; Zhang, Tanadi & Li 2010), materials with ‘cool’ surfaces as well as insulating properties (Ferrari et al. 2016; 
Karlessi et al. 2009) and cool materials incorporating phase-change materials (Karlessi et al. 2011; Pisello et al. 2016).  
Thermochromic materials, which can change their optical and thermal properties in a dynamic way responding to their 

 



 

RP1037 Final Report  19 

 

environment (Karlessi et al. 2009; Sharma et al. 2017), materials with anisotropic reflectance (Hooshangi 2015), and 
‘super cool’ materials (Gentle & Smith 2015) have also been under development. 

The optical properties of commercially available cool roof products are available in several databases, such as the US 
Cool Roof Rating Council Rated Products Directory, the US EPA Energy Star Roof products database and the European 
Cool Roofs Council rated products database. 

2.3 Known Benefits of Cool Roofs 

A large number of experimental and modelling studies have documented the multiple benefits of cool roofs at building, 
city and global scale (see, e.g., reviews by EPA (2014); Pisello (2017); Santamouris, Synnefa and Karlessi (2011); 
Synnefa and Santamouris (2015)).  The known benefits of cool roofs can be summarised as: 

 Improved thermal comfort conditions in buildings with unconditioned indoor spaces; 

 Reduced summertime air conditioning costs for conditioned buildings and reduced peak electricity demand; 

 Improved life expectancy of roof systems & reduced costs for maintenance (less thermal fatigue); 

 Mitigation of the urban heat island effect; 

 Improvement of outdoor thermal comfort conditions; and 

 Mitigation of global warming. 

In the following sections, a literature review is provided focusing on the benefits of cool roofs in terms of reducing energy 
consumption urban heat island mitigation.   An emphasis has been maintained on studies related to commercial 
buildings. 

2.3.1 Reduced Building Energy Consumption 

A cool roof transfers less heat to the building below compared to a non-cool roof surface, so the building stays cooler 
and more comfortable and/or uses less energy for cooling. Every building responds differently to the effects of a cool 
roof, depending on the local climate, building envelope characteristics, sky view factor, building type and use, HVAC 
systems, etc. Many studies have attempted to estimate the energy saving resulting from the application of a cool roof in 
both residential and non-residential buildings (Akbari & Konopacki 2004). It was found that the reduction of building 
energy consumption ranges from 2% to over 40%, with average savings of about 20%. As could be expected, air 
conditioning savings are more significant for buildings: in hot climates, with low levels of insulation and with large roof 
surface compared to other surfaces of the building (Akbari 2005; Akbari & Hosseini 2014; Haberl & Cho 1998; Levinson 
et al. 2005a; Romeo & Zinzi 2013; Synnefa, Saliari & Santamouris 2012; Synnefa, Santamouris & Akbari 2007).  

Cool roofs have been documented to increase energy consumption during winter.  However, the magnitude of this 
‘penalty’ has been shown to be much less than the benefits offered by cool roof technology during summer, in warm and 
temperate climates.  This is due, in part, to the relatively smaller quantity of solar energy that is incident on roofs during 
winter, due to decreased daylight hours, the position of the sun in the sky, and higher frequency of overcast days (Akbari 
& Hosseini 2014; Synnefa, Saliari & Santamouris 2012; Synnefa, Santamouris & Akbari 2007). 

Experimental studies have quantified the energy savings due to cool roofs for many individual buildings. Field studies, 
mainly conducted in the USA, report reductions in the energy demand of commercial buildings when a cool roof is 
applied ranging from 6-50%. It was found that increasing the solar reflectance of the roofs of an office building, museum, 
and hospice in Sacramento, California, by approximately 0.4, resulted in daily cooling energy use savings of 10, 20, and 
11 Wh/m2 (17%, 26%, and 39%), respectively (Hildebrandt, Bos & Moore 1998). Measurements from seven retail stores, 
within a mall in Florida, before and after the application of cool roof coatings (initial SR=0.2 and final SR=0.75), showed 
an average reduction in summer space cooling energy of 8.6kWh/m2 (25% savings) (Parker, Sonne & Sherwin 1997).  
Reductions in energy use for individual shops ranged from 25.5 kWh/day to 34.1 kWh/day, corresponding to savings of 
13–48%. Konopacki et al. (1998) measured the reduction in summer daily cooling energy use due to the application of 
highly reflective coatings (increasing roof albedo by approximately 0.4), in three commercial buildings in California, one 
medical office in Davis, another one in Gilroy and a retail store in San Jose. The cooling electricity use was reduced by 
67 Wh/m2 (18% savings) in the Davis medical office, 39 W h/m2 (13% savings) in the Gilroy medical office, and 4 W h/m2 
(2%) in the San Jose retail store. Konopacki and Akbari (2001) measured the reduction in summer daily cooling energy 
use due to the installation of a reflective membrane (increasing the roof reflectance from 0.05 to 0.85) at a retail shop in 
Austin, Texas. The measurements showed a daily cooling energy use saving of 39 Wh/m2 (11% savings), and a peak 
demand reduction of 3.77 W/m2 (14% decrease). Akbari (2003) monitored the energy use in two small non-residential 
buildings during the summer of 2000. The buildings were monitored before and after the application of a white coating, 
which changed the roof reflectance from 0.26 to 0.72. The measured electricity savings were close to 0.5 kWh/d (33 
Wh/m2 /day) and the estimated annual savings were approximately 125 kWh per year (8.4 kWh/m2).  Akbari, Levinson 
and Rainer (2005) monitored the effects of cool roofs on energy use in six Californian buildings, at three different sites: a 
retail store in Sacramento; an elementary school in San Marcos; and a four-building cold storage facilities in Reedley. 
The measured savings in average air conditioning energy use was close to 72 Wh/m2/day (52%), and savings in average 
peak demand were approximately 10 W/m2 of conditioned area in the retail store, 42–48 Wh/m2/day (17–18%) and 5 
W/m2 respectively for the school building and about 57–81 Wh/m2/day (3–4%) and 5–6 W/m2 for the storage facility. In 
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India, Xu et al. (2012) measured annual energy savings from roof-whitening of previously black roofs in Hyderabad.  
Results ranged from 20 to 22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14–26%. 
During the summer 2012, Pisello, Santamouris and Cotana (2013) monitored an office building located in Rome, Italy, 
before and after the application of a cool coating to the roof, which change the solar reflectance from 0.05 to 0.75. It was 
found that the cool roof reduced the energy consumed by the air conditioner by approximately 34% during the day.  
Studies summarised in an EPA (2014) reported measured reductions of peak demand for cooling energy that range from 
14 to 38% after installation of a cool roof. 

Building simulations have also been used to quantify building energy savings due to cool roofs.  Levinson and Akbari 
(2010) used BPS to simulate the annual heating and cooling energy use of new and old office and retail building 
archetypes in 236 US cities. They estimated the cooling energy saving energy penalty (annual cooling/heating energy 
use with a non-cool roof minus annual cooling-energy use with a cool roof) for each combination of archetype and city 
when roof solar reflectance is increased by 0.35. Average annual cooling energy saving for each state, when weighted 
by conditioned roof area, ranged from 3.30 kWh/m2 in Alaska to 7.69 kWh/m2 in Arizona, while the national average was 
5.02 kWh/m2. The authors concluded that cool roofs reduce building cooling loads more than they increase the heating 
load in almost all cases. Earlier efforts to quantify the impact of cool roofs on commercial buildings in various US cities 
have been described by Akbari and Konopacki (2005); Akbari, Konopacki and Pomerantz (1999); Konopacki et al. 
(1997).  

Wang et al. (2008) developed a dynamic model for a retail shed and compared the electricity consumption of the shed if 
it were coated with different near-infrared reflective materials (with solar reflectance values ranging from 0.32 to 0.65). 
Simulations were run for six locations around the world. They reported that reflective coatings reduced the energy 
consumption by 25–38% in hot climates. Costanzo et al. (2013) investigated the impact of cool roofs on an existing office 
building in Catania, Italy. They found that cool paints with SR=0.45 and SR=0.85 reduced the peak cooling load by 14% 
and 44%, respectively. Soussi, Balghouthi and Guizani (2013) studied the energy performance of a solar-cooled office 
building located in Tunisia. They found that improved wall insulation and installation of a cool roof would result in savings 
of 46% in winter and 80% in summer, compared to the original building. 

Focusing on cold climates, Hosseini and Akbari (2016), used BPS to demonstrate that snow accumulation on cool roofs 
during winter can reduce the heating penalties attributable to cool roofs. Snow accumulation provides an additional layer 
of insulation and increases the solar reflectance of the roof, regardless of the optical properties of the roof surface 
beneath. The study showed that the annual heating energy use penalty from implementing a cool roof on an office 
building in Anchorage, AK was 3 GJ/100m2 when neglecting snow accumulation, but was only 1 GJ/100m2 when snow 
cover was taken into account. Similarly, it was found that the heating energy penalty from implementing a cool roof on a 
retail building in Anchorage, AK, was 2.3 GJ/100-m2 and 1.2 GJ/100m2 when the effect of snow was neglected or 
included, respectively. The authors concluded that actual heating penalties in cold locations with a significant snow 
accumulation are likely to be lower than values predicted through simulation analyses that did not account for snow 
cover. Moreover, Touchaei, Hosseini and Akbari (2016) concluded that the implementation of cool roofs and walls on 
commercial buildings in Montreal, Canada would result in annual energy savings as high as 11%. 

Calibrated building simulations, in which inputs are iteratively adapted to match experimental data, have also been 
applied to the assessment of cool roof performance. Synnefa, Saliari and Santamouris (2012) investigated the impact of 
an increase in roof solar reflectance of 0.69 on a non-insulated school building in Athens, Greece, with a 410 m2 roof. 
Simulation results showed a decrease in the annual cooling load of 40% while the corresponding heating penalty (i.e. the 
increase of heating load) was 10%. The application of a cool roof (SR 0.88) to an office/laboratory building belonging to a 
school campus in Trapani, Italy, has also been performed (Romeo & Zinzi 2013). A 54% reduction in the cooling energy 
demand was observed. In London, UK, Kolokotroni, Gowreesunker and Giridharan (2013) simulated the impact of a cool 
coating on a naturally ventilated office building. A roof albedo of 0.6–0.7 was found to be the optimum value, which 
yielded energy savings varying between 1 and 8.5%. Kolokotsa et al. (2012) studied a cool roof in a laboratory building in 
Crete, Greece. The roof solar reflectance was increased from 0.2 to 0.89. The authors found annual energy savings of 
19.8% for the whole year and 27% for the summer period because of the cool roof. 

Mastrapostoli et al. (2014) also used calibrated simulations.  They analysed the contribution of a cool roof in the 
reduction of energy demand for cooling in an existing industrial building located in Oss, Netherlands. The value of the 
roof albedo has changed from 0.3 to 0.67. It was found that there was a decrease of 73% in the cooling load while there 
was an annual heating penalty of 5%. Jo et al. (2010) monitored roof surface temperatures to calibrate a building model 
located in Phoenix, Arizona. Monthly electricity reductions of 2.6–3.8% were achieved by installing a cool coating on the 
roof (albedo of roof increased from 0.3 to 0.72). Bhatia, Mathur and Garg (2011) used a calibrated model to estimate the 
energy savings from cool roofs in commercial buildings in India. The annual energy savings varied from 3% to 5% in the 
different climatic zones of India. In Melbourne, Australia it was shown by means of calibrated simulation for a typical 
commercial building cooling energy reduction of 3% were achieved when the roof reflectance was increased by 
approximately 0.6 (UMelb 2011). 

2.3.2 Urban Heat Island Mitigation 

In addition to the benefits described above, cool roofs have been shown to mitigate urban heat island effects.  Numerous 
studies have quantified the potential benefits of widespread implementation of cool roofs, cool pavements and other 
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mitigation measures in various cities (Campra et al. 2008; Millstein & Menon 2011; Rosenzweig, Solecki & Slosberg 
2006; Sailor 1995; Synnefa et al. 2008; Taha 1997, 2005, 2008; Taha, Chang & Akbari 2000; Taha, Hammer & Akbari 
2002; Taha, Konopacki & Gabersek 1999; Zhou & Shepherd 2010). The majority of such studies have predicted that cool 
roofs could reduce urban air temperatures by 1-2.5°C (Santamouris et al. 2017a). 

2.3.3 Influence of Ageing on the Thermal and Energy Performance of Cool Roofs 

The optical-radiative performance of building envelope materials can be strongly affected by weathering, soiling, 
biofouling, and chemical and physical stress, collectively referred to as ageing (Berdahl et al. 2008).  Roofing materials 
with initial solar reflectance greater than 0.80 are especially susceptible to the effects of ageing, which can lead to a 
mean reduction in SR of about 0.16 (average maximum of 0.24) after three years of natural exposure to low or 
moderately polluted non-urban or suburban sites (Sleiman et al. 2011).  In polluted metropolitan areas, such as Rome or 
Milan, the mean loss of SR may exceed 0.19 after only one year (Paolini et al. 2014).  In Rome, ageing may cause a 
reduction in the benefits of cool roofs of 14 or 23%, for insulated or uninsulated commercial buildings, respectively, and 
of 20-34% in Milan (Paolini et al. 2014). 

Not all materials and surfaces are equally affected by ageing.  Prepainted (factory applied) cool roofs have been found to 
be less subject to ageing, often with negligible losses (Sleiman et al. 2011; Sleiman et al. 2014).  However, the natural 
ageing campaigns on which these results were based involved small flat samples, without the geometric features of 
metal roofing that might cause dirt accumulation.  Ageing effects are typically larger on roofing membranes and field-
applied coatings (Sleiman et al. 2011; Sleiman et al. 2014).  

Cleaning without bleaching cannot easily recover the initial solar reflectance (Levinson et al. 2005b), and the biological 
growth that typically develops on the surface after soiling (Ferrari et al. 2017; Mastrapostoli et al. 2016) can produce 
even more significant changes in the surface properties. 

2.4 The effects of Above-Roof Air Temperature 

There have been claims that, in addition to the direct benefits of cool roofs mentioned above, the reduction in above-roof 
air temperature caused by cool roofs can further improve building energy performance (Carter 2011; Carter & Kosasih 
2015; Leonard & Leonard 2006; Pisello 2017; Pisello, Santamouris & Cotana 2013).  In previous publications such 
additional benefits have been referred to as ‘second-order’ or ‘active’ effects.  The effects of reduced above-roof air 
temperature are purported to be: 

 Reductions in the energy required to run rooftop HVAC equipment during hot periods; and 

 Improved efficiency of rooftop PV panels. 

Current building energy modelling software packages assume that the building is permanently surrounded by the 
prevailing ambient air condition and do not take into account the effects arising from localised variations in air 
temperature above roofs.  Thus, these effects have typically not been taken into account in previous assessments of cool 
roof performance. 

Previous publications have also claimed that the flux of heat conducted through a roof, into the building, would be 
reduced by a larger amount by cool roofs than is predicted by conventional building simulations, due to reductions in 
above-roof air temperature (Carter 2011; Carter & Kosasih 2015).  It is true that the one-dimensional heat transfer 
models that are usually used in such simulations fail to take building-scale effects, such as spatial variations in the 
temperature field above a large roof, into account.  In addition, the convective heat transfer coefficients used in these 
calculations are also based on highly simplified versions of reality, which has been shown to affect simulation results 
significantly (Costanzo et al. 2014; Mirsadeghi et al. 2013).  However, such inaccuracies cannot be remedied by simply 
imposing a measured above-roof air temperature as the ambient/freestream temperature in simulations.  The definition 
of outdoor conditions in BPS should match that on which the convective heat transfer coefficient is based (typically this 
requires the ambient/freestream temperature to be measured far enough from the surface that it is unaffected by the 
surface temperature).  If previous assessments of cool roof performance have underestimated reductions in conductive 
heat transfer through the roof, it is due to the simplified models that were used, not any failure to take near-field above-
roof air temperatures into account. 

2.4.1 The Physics of Above-Roof Air Temperatures 

There is a theoretical basis for claims that cool roofs reduce above-roof air temperatures, since air in contact with the 
roof surface will have the same temperature as the surface.  However, the distribution of air temperature further above 
the roof is less certain.  Complex patterns of air flow are likely to form above hot roofs, driven by the prevailing wind and 
buoyant forces arising from temperature differences within the air.  The efficiency with which heat is convected away 
from the hot roof surface, and thus the distribution of above-roof air temperature, is a result of such air flow. 

The relative influence of buoyancy on a fluid flow, compared to inertial forces (such as those imposed by wind), can be 
estimated using the Richardson number, which is given by: 
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 𝑅𝑖 =
𝐺𝑟

𝑅𝑒2
=
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿

�̅�𝑟𝑒𝑓
2  (2.1) 

Here, 𝐺𝑟 is the Grashof number, 𝑅𝑒 is the Reynolds number, 𝑔 is the acceleration due to gravity (~9.81m/s2 on earth), 𝛽 

is the thermal expansion coefficient of the fluid (~1 𝑇⁄  for air, where 𝑇 is the local air temperature in degrees Kelvin), 𝑇𝑠 is 

the surface temperature, 𝑇∞ is the prevailing ambient air temperature, 𝐿 is the characteristic length scale of the flow (in 

the case of flow around buildings, this is typically the building height or wall length), and �̅�𝑟𝑒𝑓 is the time-averaged 

reference wind speed (typically measured at a height of 10m). 

Flow characteristics at different Richardson numbers have been summarised by many authors, e.g. Arya (1975); 
Batchelor (1954); Turner (1979).  Flows with high Richardson numbers (≳10) tend to be dominated by buoyant forces, 

leading to what is referred to as ‘natural’ or ‘free’ convection.  Thermal stratification, plumes and thermals are common 
features of natural convection.  Flows with low Richardson numbers (≲0.1) tend to be dominated by inertial forces, giving 

rise to a ‘forced’ convective regime in which thermal mixing is primarily by turbulent mixing and diffusion (Kestin & 
Richardson 1963). Richardson numbers in the range between the forced and natural convection regimes correspond to a 
‘mixed’ convective regime, in which a combination of flow features from the forced and natural regimes can arise, often in 
a transient manner.  The RP1037 researcher determined the order of magnitude of Richardson numbers relevant to 
airflow above large-footprint buildings, which revealed that all three regimes of convection (i.e. forced, mixed and natural 
convection) are likely to be involved (see Figure 2.2). 

 

Figure 2.2: Richardson numbers for air flow over large-footprint buildings (with a reference length of 100m), for a range of reference 
wind speeds and surface temperatures (𝑇𝑠); ambient temperature (𝑇∞) has been fixed at 30°C.  The shaded region indicates Richardson 
numbers that are likely to be relevant to cool roofs, based on surface temperature measurements in previous studies and typical wind 
speeds (when the roof surface temperature is warmer than ambient). 

 

The flow of wind around buildings has been studied extensively, for applications such as building structural design, 
pedestrian-level wind mitigation, pollution dispersion and the natural ventilation of buildings (see, e.g., reviews by Baker 
(2007); Blocken (2014); Lateb et al. (2016); Tieleman (2003); Tominaga and Stathopoulos (2013)), so the features of 
such flow are relatively well understood.  The vast majority of previous studies have focused on isothermal or quasi-
isothermal flows, so their results may not be applicable to flows in the mixed or natural convective regimes.  
Nevertheless, phenomena identified in these works, such as flow separation and vortex shedding from the corners of 
buildings, are likely to have a significant effect on thermal mixing above roofs, thus influencing the air temperature 
distribution around HVAC equipment and PV panels. 

The distribution of temperatures above roofs is also likely to be influenced by rooftop equipment, such as HVAC plant 
and PV panels.  For example, hot exhaust flows from HVAC equipment, shading of the roof by PV panels, or disruption 
of airflow by any piece of rooftop equipment may have a significant effect on local temperatures.  Fans contained in 
rooftop HVAC equipment may also induce mixing of air above roofs, or draw air preferentially from higher or lower 
portions of the inlet duct, thereby influencing the average inlet air temperature to the equipment.  Therefore, any attempt 
to quantify the effects of cool roofs on above-roof air temperature should account for such local factors. 
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2.4.2 Existing Evidence of Cool Roof Influence on Rooftop Equipment 

The effects of cool roofs on rooftop equipment have been paid relatively little attention by the scientific community to 
date.  A review of relevant publications revealed only five studies that had focused specifically on such effects (Carter 
2011; Carter & Kosasih 2015; Leonard & Leonard 2006; Pisello, Santamouris & Cotana 2013; Wray & Akbari 2008), and 
several publications in which they were referred to, but not studied directly (Meggers et al. 2016; Pisello 2017).  The five 
studies focused on above-roof air temperature, and the effects on rooftop equipment, are summarised in Table 2.1 and 
have been reviewed in-detail in the following paragraphs. 

Wray and Akbari (2008) measured air and surface temperatures above a 1,400m2 roof, before and after the application 
of a ‘cool’ coating to a relatively small portion (~100m2) of the roof.  Initial (non-cool) average surface reflectance was 
measured to be 0.37, and the initial emissivity was estimated to be between 0.53 and 0.63.  Roof reflectance and 
emissivity were increased to approximately 0.8 and 0.85, respectively, with the application of the ‘cool’ coating.  Air 
temperatures were measured at 26 locations, close to a rooftop HVAC condensing unit, using sensors that were shielded 
from radiative heat transfer and mechanically aspirated.  The influence of the condensing unit on nearby air 
temperatures was assessed by taking measurements with a) both the fan and compressor running, b) only the fan 
running, and c) the fan and compressor both turned off.   

It was concluded that the cool coating decreased surface temperatures by up to 23°C but only decreased condensing 
unit inlet air temperatures by 0.3°C.  The authors estimated that such a small change in air temperature would yield only 
0.3–1% reduction in HVAC energy consumption.  However, the air temperature measurements that were used to define 
the ambient/freestream temperature, and used to quantify temperature elevation close to the roof, were taken at a height 
of only 1m and 1.5m above the roof, in the vicinity of the coated area, which may not have been far enough to eliminate 
the influence of the roof, or the coating.  Wray and Akbari (2008) also observed that the condensing unit fan decreased 
air temperatures close (closer than 1m) to the unit by approximately 1.8°C (1.4°C after application of the cool coating), 
but that operation of the compressor had little effect on air temperatures near the unit inlet.  These results arose from 
comparisons between measurements taken near the condensing unit, so would not have been influenced by any 
inaccuracy in the definition of an ambient/freestream temperature. 

Pisello, Santamouris and Cotana (2013) also measured surface and air temperatures near a rooftop condensing unit, 
before and after the application of a ‘cool’ coating.  The study focused on a 60m2 mezzanine at one side of a 1,000m2 
uninsulated industrial building.  The roof albedo was measured to be 0.07 and 0.75, before and after application of the 
cool coating, respectively.  Sensors used to measure air temperature do not appear to have been shielded from radiant 
heat transfer, and the surface temperature sensors do not appear to have been in good thermal contact with the surfaces 
which they were monitoring.  Measurements of air and surface temperatures were also taken inside the building.  
However, no attempt appears to have been made to disaggregate the influence of the cool roof coating and the capacity 
or usage of the air-conditioning equipment on indoor conditions. 

It was noted that peak daytime roof surface temperatures decreased by 10–15°C after application of the cool coating, 
and that air temperatures near the condensing unit inlet were reduced by 2.1°C.  However, the reduction in air 
temperature was not determined directly from measured data, it was taken from sin curves that were fitted to average 
diurnal temperature profiles.  The quality of the fit does not appear to have been high; the actual measured reduction in 
air temperature may have been half the claimed value, or less. 

Carter (2011) measured air temperatures above two supermarket buildings in southeast Queensland, Australia.  The 
building footprints or dimensions were not stated, but simulations of similar buildings in the same study assumed a 
footprint of 3,300m2.  One building had a 6 year old ‘SkyCool’ cool roof, the other building had a non-cool “metal deck” 
roof that was “at least 10 years old”.  Optical properties of the roofs were not provided.  Air temperature was measured at 
one location, 0.7m above the centre of each roof, using shielded sensors.  Ambient conditions were taken to be those 
from local Bureau of Meteorology weather stations and some effort was taken to correct for climatic differences between 
the test sites and the nearest weather stations.  After the measured data were corrected for several sources of bias, an 
average difference in above-roof air temperature of approximately 3.33°C was observed between the two buildings (air 
above the building with a cool roof was cooler).  The authors noted that the study was conducted during an 
uncharacteristically cool and wet period and estimated that under typical conditions an average temperature difference of 
5°C may occur. 

BPS were conducted for a hypothetical building similar to the two test buildings and in the same climate zone.  Overall 
simulated energy savings attributable to the cool roof were only 20–30% of those that had previously been measured on 
the same two test buildings by the cool roof supplier.  However, when a 5°C temperature bias was applied in BPS, the 
simulated energy savings matched those claimed by the cool roof supplier, with an error of less than 2%. 

This result may appear to suggest that 70–80% of total energy savings attributable to cool roofs are due to the above-
roof temperature field.  However, the measured above-roof air temperature difference between the buildings was 3.33°C, 
not 5°C, and the energy savings measured by the cool roof supplier were ‘taken at face value’, with no analysis of the 
methods used.   

Furthermore, implementation of the 5°C temperature bias in BPS involved three adjustments: a) a constant increase in 
the temperature of ventilation inlet air during conditioning hours; b) a decrease in direct expansion system efficiency 
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during conditioning hours; and c) a constant increase in the ambient temperature used to calculate heat transfer through 
the roof, during conditioning hours.  This approach does not take into account diurnal variations in above-roof air 
temperature.  If air-conditioning was required in the evening, for example, a 5°C bias would be applied, even though the 
sun would have set and the roof would almost certainly have cooled.  The implementation of air temperatures measured 
0.7m from the roof surface as ambient when calculating heat transfer through the roof may also have been inaccurate, 
since the convective heat transfer coefficients used in these calculations are based on experiments involving specific 
geometries and boundary conditions (Mirsadeghi et al. 2013), and the incorrect use of such coefficients can affect BPS 
results significantly (Costanzo et al. 2014).  If the measurements had been taken, e.g., 0.3m or 1.5m above the roof, the 
results are likely to have been different due to the temperature profile that typically forms near hot surfaces.  Definition of 
ambient temperature for the calculation of heat transmission in BPS should match that on which the convective heat 
transfer coefficient was based. 

More recently, a study of relatively limited scope by Carter and Kosasih (2015) used CFD to simulate air temperatures 
above a 5,000m2 low-pitched roof on a building, with wind approaching perpendicular to the upstream wall.  An empirical 
model was then built from the CFD results as a means to predict the average roof surface and above-roof air 
temperatures in six discrete regions of the roof, given various reference wind speeds and convective heat fluxes from the 
roof surface.  BPS case studies were then run, to determine the effects of different roof types on the energy consumption 
of a building in Hervey Bay, southeast Queensland, Australia.  Additional BPS cases were also run for the same building 
with a weather file representing the climate in Sydney, Australia.  Results from the BSP models were post-processed 
using the empirical model, to quantify any effects that the different roof coatings may have had on HVAC energy 
consumption. 

The CFD simulations predicted roof surface temperatures 5.2–5.8°C above ambient, on average, with maximum 
temperatures 21.1–21.9°C above ambient, for a non-cool ‘Zincalume’ roof (with reflectance of 0.5 and emissivity of 0.2).  
Results for a cool roof (with reflectance of 0.72 and emissivity of 0.87) were 1.6–2°C above ambient on average, with 
maximum temperatures 9.9–10.7°C above ambient.  Air temperatures above the Zincalume roof were predicted to be 
0.6–0.7°C above ambient, on average, with maximum temperatures 3–3.5°C above ambient; while air temperatures 
above the cool roof were 0.3°C above ambient on average, with maximum temperatures 1.7–2°C above ambient.  The 
authors concluded that the savings predicted by conventional methods only accounted for 25–50% of the total reduction 
in building energy consumption brought about by cool roofs, with the remainder being attributable to the effects of above-
roof air temperatures. 

However, like many previous CFD studies/simulations of air flows around the exterior of buildings, the simulations of 
Carter and Kosasih (2015) were run using the Reynolds-averaged Navier-Stokes (RANS) equations, and the literature 
review of the present RP1037 project has indicated that this approach has several potential problems. 

Previous studies that have attempted to replicate experimental results using the RANS methodology have revealed that 
significant local errors in the CFD simulations of temperature and heat transfer can occur, especially on the top surface 
(i.e. roof) of building-like objects (Defraeye, Blocken & Carmeliet 2010; Liu, Srebric & Yu 2013; Montazeri & Blocken 
2017; Seeta Ratnam & Vengadesan 2008). 

Another issue that has most likely limited the reliability of some previous CFD studies is that boundary conditions 
implemented in the CFD simulations have represented a very simplified version of the reality of a building placed in a 
typical urban environment.   

For example, in Carter and Kosasih's CFD model, air approaching the building, from the inlet to the computational 
domain, was taken to be isothermal, and all surfaces other than the roof were adiabatic.  Different results may have been 
obtained if the building roof had been modelled as one hot surface among many other building surfaces that are also 
warm/hot, rather than an isolated hot surface in an otherwise isothermal environment.   

The CFD results may have also been influenced by the relatively small size of the computational domain.  Guidelines for 
CFD simulations of air flow around buildings suggest that lateral domain boundaries be at least 5𝐻 from the building, 

where 𝐻 is the building height (Franke & Hellsten 2011; Franke et al. 2004; Tominaga et al. 2008).  However, such 

guidelines are intended for buildings with aspect ratios close to one; in the case of low, wide buildings, the use of 𝐻 to 

determine the domain size can lead to blockage ratios far in excess of 3%, which has been shown to influence CFD 
results in some cases, and should be avoided (Franke et al. 2004).  The blockage ratio in the computational domain 
used by Carter and Kosasih (2015) was close to 11%. 

It is possible that the combined effect of these issues on the CFD results presented by Carter and Kosasih (2015) was 
small.  However, the results were not validated or compared to any experimental results in the study, so their accuracy 
cannot easily be determined. 

Leonard and Leonard (2006) reported on an experiment in which surface and air temperatures were measured above 
portions of a roof that were covered by a (279m2) black membrane and a (2,044m2) white “highly reflective” membrane.  
Very few details of the experimental method were included in the article, but it was noted that the air temperature 
sensors were shielded from radiant heat transfer.  Air temperatures measured above the black portion of the roof appear 
to have typically been approximately 2°C higher than those measured above the white portion of the roof. 
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In each of the publications described above, some conclusion was drawn as to the significance of the generally 
unaccounted-for effects of above-roof air temperature in the performance of cool roofs.  However, it appears that no 
conclusive assessment can currently be made as to the quantitative impact of the temperature field above the roofs of 
large buildings, due to the limited scope of each study, the variability in their results, and a number of methodological 
issues that have been identified.  Results from the experimental studies have varied substantially, highlighting the 
sensitivity of such results to the experimental method.   

During future work on this topic, care should be taken to ensure that: a) air temperature sensors are shielded from 
radiant heat transfer; b) if an ambient temperature is defined, its definition is appropriate; and c) experimental equipment 
is able to accurately measure the small temperature differentials that are typically of interest.  Future attempts to simulate 
above-roof air temperatures should include some validation or comparison to experimental results. 

2.5 Methods and Tools for the Study of Cool Roofs 

The following section provides a brief summary of the experimental and simulation techniques that are commonly used 
to study cool roofs.  More detailed explanations and comparisons of the techniques can be found in many of the 
resources cited below.  Results obtained using such techniques have been reviewed in the previous four sections of this 
report. 

2.5.1 Methods to Measure Solar Reflectance 

Solar reflectance can be measured using a spectrophotometer, a reflectometer or an albedometer.  The choice of 
method depends on the material and the specific application. 

The first method involves the use of a ‘UV VIS NIR’ spectrophotometer equipped with in integrating sphere. This method 
can measure the total spectral hemispherical reflectance, as the integrating sphere collects both specular and diffuse 
radiation, for a small area (approximately 0.1 cm2) of a flat and uniform test sample, over the spectral range of 
approximately 250 to 2500 nm. Good practice procedures for the spectrophotometric measurement of the optical 
properties of materials are defined by ASTM E903, EN14500, CIE130 and ASHRAE74. The solar reflectance can be 
calculated by weighted-averaging, using a standard solar spectrum as the weighting function. The irradiance standard 
data, used for this calculation are tabulated in ISO 9845-1 or ASTM Standard G159-98 (replaced by ASTM G173-03). 
The choice of the standard solar irradiance spectrum is very important as it can lead to differences in the determination 
of the solar reflectance of a sample at a range of 0-4% SR and which are more important for spectrally selective 
materials.  

Measurement of solar reflectance with a portable solar reflectometer involves the measurement of the reflectance of a 
flat and uniform surface of a few cm2. The portable solar reflectometer measures near normal-hemispherical reflectance 
by illuminating a surface with diffuse light and sensing light reflected at near-normal incidence. The measurement 
procedure is described in ASTMC1549. 

For in-situ SR measurements (typically of large surfaces), an albedometer can be used. The procedure is described in 
ASTM E1918 and requires the mounting of the albedometer on an arm and a stand that places the sensor at a height of 
50 cm above the surface to minimize the effect of the shadow on measured reflected radiation.  

Levinson, Akbari and Berdahl (2010a, 2010b) presented a critical review of the above-mentioned methods to measure 
solar reflectance.  The authors proposed a clear-sky Air Mass 1 Global Horizontal spectral irradiance (AM1GH) 
evaluated under the atmospheric conditions specified in ASTM Standard G173 that when used to calculate solar 
reflectance better predicts solar heat gain and cool roofs energy savings. 

For flat but non-uniform (heterogeneous) samples, statistical methods are needed in order to determine the solar 
reflectance. The CRRC-1 Test Method #1 proposed by the US Cool Roof Rating Council, uses a Portable Solar 
Reflectometer and requires multiple measurements at different locations on a single sample. The mean solar reflectance 
of the test surface is determined by taking the average of several measurements taken at random locations on the 
sample. With this method, for samples with high degree of variation in the solar reflectance, the convergence rate is 
slower than typical variegated materials and requires a large sample size to estimate the solar reflectance with the 
required accuracy. Akbari, Hooshangi and Touchaei (2015) have proposed a Modified Monte Carlo method that can 
increase the convergence rate to estimate the mean solar reflectance.  

Alternatively, for rough and/or non-uniform surfaces, the ASTM E1918 method using a pyranometer can be used.  A 
square or round 10m2 surface is required. Akbari, Levinson and Stern (2008) have proposed a method (variant to 
ASTME1918) to estimate the solar reflectance of low and high-profiled tile assemblies of about 1m2 using a pyranometer 
and a pair of black and white masks. 

Most of the experimental studies involving the measurement of roof albedo employ one of the above mentioned 
methods. For example, Kolokotsa et al. (2012); Romeo and Zinzi (2013); Synnefa, Saliari and Santamouris (2012) 
measured the solar reflectance of cool roofing samples using a spectrophotometer with an integrating sphere, and 
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Konopacki and Akbari (2001); Pisello et al. (2016); Pisello (2015) measured the roof solar reflectance using an 
albedometer. 

2.5.2 Methods to Measure Infrared Emittance 

The infrared emittance of a surface can be determined by using portable devices (emissometers) that measure the 
hemispherical emittance in the range of approximately 5-80μm. This procedure is described in standards such as the 
ASTM C1371, ASTM E408 (directional thermal emittance) and EN15976 (directional thermal emittance). In addition to 
these methods and standards, which are suitable for measuring an average infrared emittance, there are other 
techniques and instruments, such as Fourier Transfer Infra-Red (FTIR) spectroscopy, that provide detailed spectral 
measurement of the emittance as a function of wavelength. Such techniques have typically been developed for the 
glass/glazing and blinds/shutters industries (e.g. EN 12898). It should be mentioned that a lot of uncertainties are 
involved in the measurement of emissivity, as several factors, like the sample temperature, surface geometry, etc. affect 
the measurement. 

Most of the experimental studies involving the measurement of roof thermal emittance employ one of the above 
mentioned methods. For example, Synnefa, Saliari and Santamouris (2012); Synnefa, Santamouris and Apostolakis 
(2007); Synnefa, Santamouris and Livada (2006) measured thermal emittance of cool materials using an emissometer 
and Carnielo and Zinzi (2013) used the FTIR method.  

2.5.3 Experimental Measurement of Roof Thermal Performance  

In order to assess the thermal performance of a cool roof in terms of quantifying heat transferred to the ambient air 
above the roof the measurement of the surface temperature of the roof as well as of other microclimatic parameters 
(such as air temperature at different heights, wind speed and direction) above and near the roof is necessary.  

Regarding the surface temperature, an appropriate surface temperature sensor should be selected and connected to a 
data logging system to have continuous measurements for detailed analysis. Attention should be paid when placing the 
sensor on the surface as the sensor should not be exposed directly to incident solar radiation and the optical 
characteristics of the sensor upper surface should be similar to those of the surface tested Konopacki and Akbari (2001); 
Pisello (2017); Wray and Akbari (2008). In addition, an infrared thermometer or infrared camera can be used to measure 
the temperature distribution on large surfaces, e.g. roofs Mastrapostoli et al. (2014); Romeo and Zinzi (2013); Synnefa, 
Saliari and Santamouris (2012). Recent studies have also used aerial infrared monitoring (unmanned aerial vehicles 
equipped with high-quality IR cameras) to record the surface temperature of the urban fabric, including roofs Gaitani et 
al. (2017); Santamouris et al. (2017b). 

2.5.4 Simulation Techniques Relevant to Cool Roofs 

Simulations of urban thermodynamics and/or fluid dynamics are often classified based on the spatial scales involved 
(Blocken 2014; Mirzaei 2015; Mirzaei & Haghighat 2010; Toparlar et al. 2017).  Mesoscale simulations are typically 
concerned with phenomena at the precinct or city scale (approximately 1–100km), and represent the influence of 
individual buildings with simplified models (e.g. wall roughness models or spatially averaged albedo values).  Microscale 
simulations usually encompass a region the size of a city block or neighbourhood (approximately 100m–1km).  Such 
simulations typically resolve the general forms of buildings, etc., but omit many of the finer details.  Simulations can be 
considered to be at the ‘building-scale’ if they resolve only the indoor portions of a single building, and represent outside 
influences with simplified models. 

Cool roofs can be studied at all three scales.  Simulation of the urban heat island phenomenon, and the mitigating effect 
of widespread cool roof implementation in a city or precinct, needs to be at the mesoscale.  Microscale simulations are 
better suited to investigations into the effects of individual cool roofs on the nearby outdoor environment (e.g. the heating 
of outdoor air by roofs and the effects on rooftop equipment).  BPS, which are conducted at the building-scale, are very 
well suited to predict the annual energy consumption of individual buildings with or without cool roofs.  Although, as 
discussed previously in this report, previous BPS have typically not taken the above-roof temperature field into account. 

The formulation of cool roof simulations depends on the aims of the study.  All methods are based on the conservation of 
energy, mass and/or momentum.  The degree to which physical processes are resolved, represented by simplified 
models, or neglected altogether, is usually determined on a case-by-case basis, to ensure that the behaviour of interest 
is accurately represented while minimising computational cost. 
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Table 2.1: Summary of Previous Research into the effects of Cool Roofs on Above-Roof Temperature Fields and Rooftop Equipment 

Reference   Location Method Variables Studied Key Findings 

Wray and 
Akbari 
(2008) 

California, 
USA 

Experiments 
before/after 

application of 
a cool coating 

 Roof albedo 

 Air temperatures 
surrounding the HVAC 
system 

 Roof surface temperature 

 Outdoor air temperature 

 Outdoor relative humidity 

 Wind speed and direction 

 Total horizontal solar 
radiation 

 The cool roof decreased the surface 
temperature of the roof by a maximum of 
approximately 26–28°C 

 The cool roof decreased the maximum 
temperature difference between the roof 
surface and the outdoor air reference by 
approximately 18–23°C 

 The cool roof eliminated the temperature rise 
of 0.3 °C recorded at peak solar conditions 
near the condenser inlet 

 A cool roof reduced the temperature rise of 
2.1°C recorded at peak solar conditions at the 
condenser inlet to 1.4°C. 

 The condensing unit fan decreased air 
temperatures close to the unit by 
approximately 1.8°C (1.4°C after application of 
the cool coating) 

 Operation of the HVAC compressor had little 
effect on air temperatures near the condenser 
unit inlet 

Pisello, 
Santamou
ris and 
Cotana 
(2013) 

Rome, Italy Experiments 
before/after 

application of 
a cool coating 

 Surface temperature 

 Air temperature near the 
inlet of HVAC outdoor unit 

 Infrared thermography 

 Albedo measurements 

 The cool roof decreases the daily maximum 
surface temperature by 10–15°C. 

 The cool roof was claimed to decrease the 
overheating of the suction air temperature by 
2.1°C 

Carter 
(2011) 

Queensland, 
Australia 

Simultaneous 
experiments 
on nearby 

buildings; BPS 

 Weather data collected 
from nearby weather 
stations 

 Dry bulb temperature 
above the roof 

 BPS to estimate energy 
savings 

 The temperatures above the roofs were higher 
for the non-cool aged metal deck roof 
compared to the cool roof, by 2 to 5°C (3.33°C 
on average for all samples) 

 Changes in above-roof air temperature was 
claimed to be responsible for 70–80% of 
energy savings 

Carter and 
Kosasih 
(2015) 

Australia BPS and CFD 
simulations 

 BPS to determine first-
order effects of different 
roof coatings. 

 CFD parametric analysis 
to determine roof surface 
and above-roof air 
temperature elevations 

 Post-processing of BPS 
results to estimate the 
effects of above-roof air 
temperature 

 CFD predicted roof surface temperatures up to 
21.9°C above ambient, and air temperatures 
near the roof up to 3.5°C above ambient 

 Changes in above-roof air temperature was 
claimed to be responsible for 50–75% of 
energy savings 

Leonard 
and 
Leonard 
(2006) 

Minnesota, 
USA 

Side-by-side 
experiments 

on portions of 
the same roof 

 Surface temperature 
under each roofing 
substrate 

 Air temperature near four 
HVAC units located on 
each of the different roof 
systems 

 Weather station that 
records rooftop solar 
intensity, air temperature, 
wind speed and rainfall 

 A maximum difference in air temperature 
above the black membrane (38.8°C) and the 
reflective white membrane (31.1°C) is reported 
to be approximately 7.7°C.  Typical differences 
were closer to 2°C 
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3 Experiments 

3.1 Aims and Objectives 

The experimental campaign was undertaken with three primary aims: 

1. Produce a comprehensive dataset, including temperature measurements throughout the thermal boundary layer 
above the roofs of large-footprint buildings, and measurements of the environmental variables that may influence 
such temperatures; 

2. Determine whether rooftop HVAC equipment and PV panels influence the local air temperature, such that it is 
different from those measured above bare roof surfaces; and 

3. Generate data suitable for the validation of full-scale CFD simulations of air flow and heat transfer external to 
large-footprint buildings. 

Results from the experiments were used to generate a model, which corrected the air temperature near rooftop HVAC 
equipment and PV panels in BPS.  They were also used to evaluate the accuracy of several CFD techniques. 

The investigation was focused on physical processes occurring above the roof surface, particularly the influence of the 
roof surface temperature and local weather conditions on above-roof air temperatures.  Thus, the complex heat transfer 
and fluid dynamics that occur within the building envelope were not investigated. 

The following objectives were established, to address the aims outlined above: 

 Establish methods to accurately measure surface and air temperatures in locations exposed to solar radiation and 
radiative heat transfer with the sky; 

 Measure air temperatures close to the roofs of several large-footprint buildings, and the environmental variables 
that may influence such temperatures, and do so for several weeks, such that the results represent day and night 
scenarios with a range of weather conditions; 

 Take measurements close to and further away from rooftop HVAC equipment and PV panels, to quantify any 
local influence such equipment has on the above-roof temperature field; 

 Measure the roof surface optical properties at each case study building; and 

 Take detailed measurements, at several points in time, to provide pseudo-steady test cases for CFD simulations 
– the set of measured parameters must include those required as boundary conditions by the CFD simulations 
and several parameters for comparison with the CFD results. 

3.2 Case-Study Buildings 

Experiments were conducted at three air-conditioned shopping centres, located in Nowra, Shellharbour and Wetherill 
Park, in New South Wales, Australia.  The Nowra building had a 15,978m2 aged, bare metal roof.  The buildings in 
Shellharbour and Wetherill Park had roofs of 76,130m2 and 71,356m2, respectively, which were composed of a 
combination of aged and relatively new bare metal, painted steel and concrete carparks (see Figure 3.1).  All three roofs 
featured arrays of PV panels and several rooftop HVAC units, including air-cooled heat exchangers, cooling towers and 
ventilation air inlets. 

3.3 Experimental Methodology 

The experiments were divided into three categories:  

1. Preliminary tests, which established accurate measurement procedures for the subsequent experiments; 

2. In-situ monitoring, which collected data over a relatively long period at each building, spanning a range of 
meteorological conditions; and 

3. Point-in-time detailed measurements, which established several detailed ‘snapshots’ of conditions near each 
building, and characterised the surface optical properties of each roof. 

Descriptions of the preliminary tests have been included in Section 3.4. 
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3.3.1 In-Situ Monitoring 

In-situ monitoring lasted for a period of approximately 6 weeks at each of the three case study buildings: 13th December 
2017 – 30th January 2018 in Nowra, 5th February – 20th March 2018 in Shellharbour, and 27th March – 5th May 2018 in 
Wetherill Park.  Fifteen 1.5m masts were installed on each roof during the in-situ monitoring periods (see Figure 3.1 and 
Figure 3.2).  Each 1.5m mast was fitted with four Hobo TMCX-HD temperature sensors, one of which measured the roof 
surface temperature and the remaining three measured air temperatures at heights of 0.15m, 0.5m and 1.5m above the 
roof surface.  Readings from the four sensors were logged every 5min.  The surface temperature sensor was adhered to 
the roof surface with a thermally conductive compound and shielded from radiative heat transfer by a small piece of 
aerogel insulation coated in foil tape.  Each air temperature sensor was shielded from radiative heat transfer by a 
modified HOBO RS3 radiation shield (see 3.4.2 for more details). 

 

Figure 3.1:  Photographs of the case-study buildings in a) Nowra, b) Shellharbour and c) Wetherill Park.  Several arrays of photovoltaic 
panels had been installed on the Wetherill Park roof before the experimental campaign, which are not shown in photograph c, above. 
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Figure 3.2:  Equipment used for in-situ monitoring: a) one of the fifteen 1.5m masts, used to measure the roof surface temperature and 
air temperatures at three heights; and b) the 8m mast, which was fitted with a range of meteorological sensors. 

The 1.5m masts were arranged on the roofs such that: a) they were relatively evenly spread over the entire roof surface; 
b) measurements were taken above each type of roofing material that was present; and c) measurements were taken 
close to, and further away from HVAC equipment and PV panels.  In some cases, 1.5m masts were deconstructed and 
the sensors were mounted directly to the inlets of HVAC equipment (see Figure 3.3), in order to measure the 
temperature of air entering the units.  The temperature of PV panels was also measured in some cases, by removing the 
lowest air temperature sensor from 1.5m masts within array of PV panels, adhering it to the underside of a PV panel with 
thermally conductive compound and insulating the exposed thermistor surfaces with 5m of aerogel insulation wrapped in 
foil tape (see Figure 3.3). 

   

Figure 3.3:  Atypical installations of sensors from the 1.5m masts: a) shielded thermistors attached to the inlet of rooftop HVAC 
equipment, and b) a thermistor mounted to the underside of a PV panel and covered by foil-coated aerogel insulation. 

Meteorological conditions were also monitored and logged every 5min, using equipment mounted to an 8m mast (see 
Figure 3.1 and Figure 3.2).  Air temperature, humidity, pressure, mean horizontal wind velocity and horizontal turbulence 
intensity were measured at the top of the mast using a Gill MetPak Pro weather station.  Shielded platinum resistance 
temperature sensors, which conformed to BS EN 60751:1995 class 1/3, were mounted on the 8m mast, at heights of 2m 
and 5m above the roof.  Short-wave and long-wave radiation exchange with the sun and sky were also monitored at the 

b) a) 

a) 

b) 
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top of the mast, using a Middleton Solar EQ08-SE pyranometer and a Middleton Solar PG01-E pyrgeometer, 
respectively.  Rainfall was monitored using a RIMCO-7499-STD tipping-bucket rain gauge. 

3.3.2 Point-in-Time Monitoring 

The point-in-time detailed measurements were conducted over 1 to 2 days, during the in-situ monitoring period at each 
building.  The measurements were intended to complement the temperature and meteorological data being logged as 
part of the in-situ monitoring, to provide momentary ‘snapshots’ of conditions around the buildings, suitable for use as 
test cases for CFD simulations.  The point-in-time monitoring also included measurements of the roof surface optical 
properties. 

A drone, fitted with a Workswell WIRIS 640 infrared camera, was used to take several hundred images of the building 
roofs and surrounding surfaces, at two distinct points in time.  The images were combined to form thermal maps, 
representing surface temperatures at the time of each drone flight. 

The atmospheric boundary layer horizontal velocity and temperature were measured at three heights, upwind of the 
buildings, for several hours encompassing each drone flight.  Three Gill MetPak Pro weather stations were used for this 
purpose, mounted on a 20m telescopic mast. 

Wind speeds and velocities were also monitored within the boundary layers above the roofs during these periods.  
Fifteen wind speed measurement assemblies, each consisting of two horizontally opposed Modern Device rev. P wind 
speed sensors (see Figure 3.4), were used to measure wind speed (but not direction) at the location of each 1.5m mast, 
at a height of 1m above the roof surface and at a rate of 1Hz.  Three-dimensional air velocities were measured at a 
frequency of 20Hz, at two locations, 2m above the roof surfaces, using Gill Windmaster anemometers. 

The roof surface solar reflectance and infrared emittance were measured, at several locations on each roof.  A Hukseflux 
NR01 net radiometer was used to measure the solar reflectance, according to ASTM E 1918 (ASTM 2016), and the roof 
surface emittance was measured according to ASTM C 1371 (ASTM 2015), using a portable Devices & Services 
emissometer.  Additional estimates of the roof surface thermal emittance were made by comparing surface temperature 
measurements from the 1.5m masts to those measured using a T540 by FLIR thermal camera. 

 

Figure 3.4:  Wind measurement assembly, consisting of two horizontally opposed sensors, installed on a 1.5m mast. 

3.4 Preliminary Tests 

Preliminary tests, which were undertaken in preparation for the in-situ monitoring and point-in-time detailed monitoring, 
have been summarised in the proceeding sections.  These tests were not thorough enough to provide exact or definitive 
conclusions, but they did provide evidence which guided the design of the main experiments. 

3.4.1 Surface temperature measurement 

Since it was not possible to access the underside of the case-study roof sheets, it was necessary to establish a method 
to accurately measure roof surface temperatures using a thermistor attached to the top surface of the roof.  It was 
possible that such measurements would be affected significantly by solar radiation, convection and radiative heat 
transfer with the sky, so the susceptibility of different sensor installation methods to such effects was compared. 

Three methods were tested, all of which involved a thermistor adhered to the roof surface with a thermally conductive 
compound.  The exposed surfaces of the thermistors were then treated differently: 
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 One was coated by 5mm of aerogel insulation, with an outer coating of aluminium foil; 

 One was coated by transparent tape, such that the polished stainless steel thermistor was visible; and 

 The third test thermistor was coated in black PVC tape. 

A fourth thermistor was adhered to the underside of the roof sheet by a thermally conductive compound, to provide a 
reference temperature measurement, and a 10mm layer of aerogel insulation was attached to the underside of the sheet, 
around this fourth thermistor (see Figure 3.5).  The tests were conducted using the same thermistors that were 
eventually installed on the 1.5m masts for the in-situ monitoring.   

       

Figure 3.5:  Test setup for comparison of surface temperature measurement methods.  The photograph shows thermistors with the 
three test coatings installed on the top surface of the painted steel sheet.  The schematic illustrates how the reference thermistor was 
installed on the underside of each steel sheet. 

The tests were conducted simultaneously on both a galvanised steel sheet and a dark-coloured, painted steel sheet (see 
Figure 3.5).  The sheets were exposed to outdoor conditions for 1 week, with measurements taken every 5min.  
Temperatures recorded by the three test thermistors on each roof sheet were compared to the respective reference 
temperature measurements. 

Results from the comparison revealed that root-mean-square (RMS) deviations between test and reference temperature 
readings could exceed 2°C during daylight hours, but did not exceed 0.3°C at night-time in any case (see Table 3.1).  
The method involving aerogel insulation and foil produced readings that were closest to the reference temperatures, 
overall.  So, this method was adopted for the in-situ monitoring. 

Table 3.1:  Comparison of surface temperatures measured using thermistors with three different coatings, expressed in terms of the 
root-mean-square deviation of measured temperatures from the reference temperatures, measured under the steel sheets. 

Steel sheet type Day/night 

RMS deviation from reference temperature [°C] 

Insulated sensor 
Sensor under 

transparent tape 
Sensor under 

black tape 

Galvanised 
Day 0.811 1.852 0.791 

Night 0.122 0.236 0.064 

Dark Painted 
Day 1.206 2.258 2.288 

Night 0.122 0.148 0.255 

 

3.4.2 Radiation shield comparison 

When installed outdoors, air temperature sensors should be shielded from solar radiation.  Installations above reflective 
surfaces, such as snow or reflective roofs, can be especially challenging since large quantities of radiant heat can be 
incident on the sensor from above and from below.  Many radiation shields are commercially available, several of which 
are claimed to minimise the effects of direct and/or reflected solar radiation more effectively than competing models.  
Such shields fall into two broad categories: aspirated radiation shields, which provide shade and use a small fan to draw 
air past the sensor, and naturally ventilated shields, which also provide shade but rely on the wind and buoyancy-
induced flow to move air past the sensor.  Within the naturally ventilated category, the most important difference between 
shields from different manufacturers is in the design of the annular louvres which surround the sensor. Several studies 
have compared the performance of different radiation shields (Fuchs & Tanner 1965; Genthon et al. 2011; Huwald et al. 
2009; Nakamura & Mahrt 2005; Richardson et al. 1999), and have demonstrated that in some extreme cases the choice 
of shield can influence measurements by as much as 10°C (Genthon et al. 2011). 

Steel sheet 
Coating being 

tested 

Aerogel insulation 

Test thermistor 

Reference thermistor 

Outdoor conditions 
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It was decided not to use aspirated radiation shields for the in-situ monitoring in the present study, since it was not clear 
whether they could precisely measure air temperatures at a set height within a vertically stratified temperature field.  The 
fans in such shields may have drawn air from some unknown distance below the shields, or disturbed the local 
temperature field, thereby affecting the temperature measurement.   Due to time constraints, it was not possible to 
compare the performance of different naturally ventilated shields prior to the in-situ monitoring.  HOBO RS3 shields were 
selected and fitted with additional conical louvres made of aluminium foil, inside the original plastic louvres (see Figure 
3.6), so as to block direct visual access to the sensor from below.  During the in-situ monitoring at Shellharbour, this 
shield design was compared to two other commercially available radiation shields, to give some insight into the errors 
that may exist in the air temperature measurements. 

The three radiation shields were: 

 The HOBO RS3 radiation shield with retrofitted aluminium-foil louvres, as mentioned above; 

 A RM Young 41303-5A radiation shield, which featured a curved louvre design such that there was no visual 
access to the sensor from any angle (see Figure 3.6); and 

 A MetSpec RAD06 radiation shield, which featured two concentric rows of annular louvres, with matte black paint 
on the underside of the outer row of baffles (see Figure 3.6). 

All three shields were installed at a height of 1.5m above a region of the Shellharbour roof that was made of relatively 
new meatal-coated (Zincalume TM) steel.  The albedo of the roof near the measurement site was later measured to be 
0.5.  Temperatures were measured every 5min for 1 week. 

a) 

 

 
 

 

b) 

 

c) 

 

 

 

 

Figure 3.6:  Radiation shields that were compared: a) HOBO RS3 shield, retrofitted with aluminium-foil louvres, inside the existing 
louvres; b) RM Young 41303-5A shield; c) MetSpec RAD06 shield.  The photograph d) shows all three shields installed on the 
Shellharbour roof. 

Temperatures measured in the three shields differed by less than 2.1°C for the entire week (see Figure 3.7); 95% of the 
time, the three readings differed by less than 0.6°C, and 50% of the time, the three readings differed by less than 0.14°C.  
Night-time measurements tended to agree more than those taken during the day, which supports the hypothesis that 
differences between the measurements were largely driven by solar radiation.  It should also be noted that there were 
two events involving rapidly changing weather, on the mornings of the 10th and 11th of February 2018, which appear to 
have caused relatively large discrepancies between temperatures measured in the different shields.  If data collected 
during those two events were ignored, the maximum deviation between measured temperatures would be 1.2°C. 

d) 
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Figure 3.7:  Differences between temperatures measured in the HOBO radiation shield and the two comparison radiation shields. 

It is not possible to evaluate the error introduced to these air temperature measurements by the effects of solar radiation, 
since no trusted reference measurement was taken of the actual air temperature.  However, the results presented here 
do highlight the degree to which air temperature measurements taken throughout this project may have been effected by 
direct and reflected solar radiation.  It is extremely difficult to measure outdoor air temperatures with the accuracy and 
spatial precision that were required in this study.  Future work on similar topics would benefit from in-depth investigations 
into the effects of solar radiation on the equipment being used. 

3.4.3 Wind sensor calibration 

The Modern Device rev. P wind speed sensors installed at the location of each 1.5m mast during the point-in-time 
monitoring at each building were selected primarily because of their low cost.  It would not have been possible to take so 
many air velocity or speed measurements with conventional hot-wire or hot-film sensors, without exceeding the project 
budget significantly.  Very little information was provided with the wind sensors, pertaining to their accuracy.  Prohasky 
and Watkins (2014) tested the same sensors in a wind tunnel and found that: a) within a limited range of wind directions 
they were accurate to within approximately ±10%; b) outside of that range of wind directions, the sensors were much 
less accurate, c) within a set of the sensors, there were significant variations in how each sensor responded to the same 
wind conditions. 

In the present study, issues a and b were partially mitigated by installing the sensors relatively close to the roof surface, 
where a large portion of the wind velocity would be within a plane (parallel to the roof surface) and installing two 
horizontally opposed sensors at each location, such that the greater of the two measurements could be interpreted as a 
representation of the horizontal wind speed.  Issue c, mentioned above, was addressed by calibrating each sensor 
individually in a wind tunnel (see Figure 3.8).  Each sensor was exposed to laminar air flow, at 0, 1, 3, 6 and 10m/s.  The 
sensors were allowed to warm up for 20s prior to each 20s test.  Significant differences were observed in the responses 
of different sensors, so individual calibration curves were developed for each of the 30 sensors. 
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Figure 3.8:  Wind tunnel calibration of the wind speed sensors. 

3.4.4 Wind sensor sensitivity to solar radiation 

The Modern Device rev. P wind speed sensors functioned by measuring the voltage required to maintain a small, heated 
chip at a constant temperature.  Cooling of the chip by convection would be correlated to the wind speed, thus the wind 
speed could be estimated from the measured voltage.  However, radiative heat transfer between the chip and its 
surroundings would also affect the voltage reading.  There was some concern that the large solar heat flux may influence 
the wind speed sensor readings significantly when they were operated in direct sunlight.  This was investigated by 
comparing measurements taken by six of the wind speed sensor assemblies (each consisting of two horizontally 
opposed sensors).  Half of the assemblies were shaded while the other half were in direct sunlight; one assembly from 
each group was installed at each of three heights: 100, 200 and 300mm from the ground (see Figure 3.9).  The test was 
conducted for over a 3 hour period, with samples taken every second. 

Comparison of data from the six sensor assemblies revealed that direct solar radiation did have some effect on the 
measured wind speeds, but not to such an extent that the measurements were unusable (see Figure 3.10).  The mean 
deviation between readings from sensor assemblies in direct sunlight and those in shade was approximately 0.13ms-1, 
which was approximately 13% of the mean wind speed measured during the 3 hour test period.  Such discrepancies are 
significant, but it is not possible to determine how much of the difference was due to the solar heat flux and how much 
was due to actual spatial variations in the wind field. 

Results from this test, the wind tunnel calibrations reported above and the work of Prohasky and Watkins (2014) 
demonstrated that errors introduced by Modern Device rev. P wind speed sensors could be significant.  It is likely that, 
despite the fact that they were individually calibrated and installed close to the roof surface in horizontally-opposed pairs, 
the wind speed sensors in the present study gave readings with errors of 10-20%.  Such uncertainty was taken into 
account in the analysis of results. 

 

Figure 3.9:  Test to investigate the sensitivity of Modern Device rev. P wind sensors to direct solar radiation. 
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Figure 3.10:  Comparison of wind speeds measured by sensors exposed and unexposed to solar radiation.  Data presented here has 
been treated with a moving-average filter, with a filter width of 20s, and is a sample of only 30min from the full 3hr dataset. 

3.5 Results and Discussion 

3.5.1 Roof Surface Optical and Radiative Properties 

Optical properties of the case-study building roofs measured in the present work were commensurate with the project 
team’s previous experience with similar materials.  The measured values were very repeatable on each roof surface type 
(see Table 3.2).  Solar reflectance measurements ranged from 0.26 (for aged bare metal) to 0.61 (for steel with an after-
market cool coating); thermal emittances ranged from 0.42 (bare metal) to 0.85 (for pre-painted steel and steel with a 
field-painted cool coating). 

Table 3.2:  Optical properties of the roof surface materials, which were measured during the point-in-time detailed monitoring at each 
case study building. The variability indicates the standard deviation in the performed measurements. 

Location Roofing Material 
Surface Property 

Solar Reflectance Thermal Emittance 

Nowra Aged bare metal 0.27 ± 0.06 0.63 ± 0.01 

Shellharbour 

Relatively new bare metal 0.46 ± 0.01 0.42 ± 0.04 

Aged bare metal 0.26 ± 0.01 0.42 ± 0.02 

‘Non-cool’ pre-painted steel 0.42 ± 0.01 0.85 ± 0.01 

Wetherill Park 

Aged bare metal 0.35 ± 0.01 0.60 ± 0.01 

‘Non-cool’ pre-painted steel 0.47 ± 0.01 0.85 ± 0.01 

Steel with after-market cool coating 0.61 ± 0.01 0.85 ± 0.02 

 

The solar reflectance measured over arrays of PV panels was 0.12 ± 0.01, with little influence of the solar reflectance of 
the roof surface below.  This is likely to have been due to the panel spacing, which shadowed the roof surface almost 
entirely at the time of year that measurements were taken.  The thermal emittance of the PV panels could not be 
measured with the portable emissometer, and the thermal camera method could not be reliably used given the specular 
component of the glazing.  However, it is likely to have been very close to the thermal emittance of glass, 0.8-0.9. 

3.5.2 Roof Surface Temperatures 

In some extreme cases, measured roof surface temperatures exceeded the ambient/freestream air temperature 
(measured at the top of the 8m mast) by more than 50°C (see Figure 3.11).  The mean roof surface temperature 
elevation above ambient measured in the middle of the day (between 11:30 and 12:30 Australian Eastern Standard Time 
(AEST)) was 28.2°C in Nowra, 25.1°C in Shellharbour and 13.6°C in Wetherill Park.  One of the causes of differences in 
the distributions of roof surface temperatures measured at each building was likely to have been differences in the time 
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of year at which the experiments took place.  At night, the roof surfaces were typically several degrees below 
ambient/freestream.  These values, and the distributions presented in Figure 3.11, were a product of the weather 
conditions that occurred during the in-situ monitoring periods, so they do not necessarily represent ‘worst-case’, or even 
‘typical’ conditions, but they do give an indication of the magnitude to which the temperature of non-cool roofs can rise 
above ambient/freestream. 

 

Figure 3.11:  Temperature differences between the roof surface and reference ambient/freestream air temperatures (8m above the 
roof), measured throughout the in-situ monitoring periods at a) Nowra and b) Shellharbour.  The distributions in these plots include data 
collected throughout the entire 6 week monitoring periods, by all 1.5m masts that were not disassembled for installation on HVAC 
equipment.  Times are expressed in Australian Eastern Standard Time (AEST).  Each box in the plots represents a distribution: the 
whisker outer limits denote the minimum and maximum measured values, the box limits denote the first and third quartiles and the line 
crossing the box denotes the distribution median. 

Thermal images of the roofs, captured by the drone-mounted camera and hand-held camera operated on the roof, 
provided a useful comparison for the surface temperature measurements discussed above, and gave some insight into 
the spatial variation of temperatures on the roof surfaces (see Figure 3.12, Figure 3.14 and Figure 3.13).  Even during 
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the relatively cool day when detailed measurements were taken at Wetherill Park (ambient/freestream air temperature of 
approximately 24.5°C), with incoming shortwave radiation equal to ~ 650Wm-2, the surface temperature difference 
between a cool (SR = 0.61) and non-cool (SR = 0.47) roof was approximately 20°C (see Figure 3.14).  PV panel 

temperatures were significantly higher than the ambient temperature (‘a’ in Figure 3.13), and exhibited spatial non-
uniformity, which could have been caused by uneven convective cooling (‘c’ in Figure 3.13). 

 

Figure 3.12:  Surface temperatures measured using the drone-mounted thermal camera during relatively calm (a) and windy (b) 
conditions.  Both images depict the Nowra building roof and surrounding surfaces.  The images have been scaled based on the 
measured emissivity of the steel roof sheets, 0.625, so the temperatures of other surfaces may not be represented accurately. 

a) b) 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.13:  Comparison of thermal and visible images of PV panels, taken in Shellharbour (a and b) and Wetherill Park (c and d). 

a) 

 

b) 

 

Figure 3.14:  Side-by-side comparison of a non-cool (SR = 0.47) and a cool-coated roof (SR = 0.61) at Wetherill Park, in the infrared a) 
and visible image for comparison b). 

Comparison of temperatures from thermal images of the Nowra building roof with the corresponding surface thermistor 
measurements revealed that the thermistor measurements were generally higher, with an average discrepancy of 4.01°C 
and a maximum discrepancy of 17.22°C (see Figure 3.15).  Differences between the two sets of measurements were 
relatively wide-spread, with a standard deviation of 5.77°C. 
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Figure 3.15:  Comparison of roof surface temperatures measured using the surface-mounted thermistors and drone-mounted thermal 
camera. 

Several factors may have contributed to cause such large differences between these measurements:  

1) Uncertainty exists in the thermal images due to: 

a) Uncertainty in the thermal emittance of the roof surface, although this uncertainty was reduced significantly by 
the on-site measurements; 

b) Non-uniformity of the roof surface thermal emittance, due to differences in the roofing materials, as well as 
uneven ageing and soiling; and 

c) Uncertainty in the reflected temperature, which is required as an input when generating thermal images. 

2) Uncertainty exists in the surface temperature probe measurements, as was discussed in Section 3.4.1 of this 
report, due to: 

a) Calibration uncertainty, which was ±0.1°C in this study; 

b) Differences in the optical and radiative properties of the roof surface and those of the material covering the 
surface temperature probes, although this issue was mitigated in-part by insulating around the sensor; and 

c) Imperfect thermal contact between the sensors and the roof surface (Keltner & Beck 1983), although this 
issue was mitigated in-part by installing a thermally conductive compound between the sensors and roof. 

3) Small-scale spatial variations in the surface temperature were caused by uneven shading, air-flow, soiling, 
corrosion and biofouling, and radiative feedback, brought about by the roof sheet corrugations, as well as 
conduction to structural members below.  Such variations would have been ‘smoothed over’ by the resolution of 
the drone-mounted thermal camera, probably leading to an approximate  average value, while the thermistors 
were all installed on the wide flat portions of the roof profile. 

It was not possible, based on the thermal images alone, to differentiate between spatial variations in thermal emittance 
(issue 1b, above) and actual variations in temperature (issue 3, above).  The combined effects of these phenomena were 
large, as can be seen in Figure 3.16. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.16:  Ageing patterns over the roof of Wetherill Park in the infrared a) and visible b), and local phenomena close to one of the 
thermistors a) in the infrared and b) in the visible for comparison.  Apparent differences in temperature could be due to variations in the 
roof surface thermal emittance, or actual temperature variations. 

3.5.3 Above-Roof Air Temperatures 

Measurements from the 1.5m masts consistently resolved a vertical temperature gradient close to the roof surfaces (see 
Figure 3.17).   Stable stratification was typically observed at night-time, when the roof surfaces were exchanging heat 
with the sky but were not heated by the sun, and unstable stratification was usually observed during daylight hours, when 
the roof surfaces were heated by the sun.  

At times, air 0.5m to 1.5m above the roof surfaces (i.e. at similar heights above the roofs as rooftop PV panels and 
HVAC equipment) reached temperatures 7°C above ambient/freestream.  However, the average temperature elevation 
at such locations was only 0.98–2.21°C in the middle of the day (between 11:30 and 12:30 AEST).  These values give an 
indication of the degree to which conventional building simulation practices misrepresent the temperature of air 
surrounding rooftop equipment. 

At night, near-roof air temperatures tended to deviate less from ambient/freestream than they did during the day.  This 
could be explained by the fact that roof surface temperatures also deviated less from ambient/freestream during the 
night.  Differences in the time of year at which each experiment took place were also evident in the above-roof 
temperature measurements; the length of day and magnitude of daytime near-roof temperature elevation were both less 
in data from Wetherill Park than they were in data from the other two buildings. 
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Figure 3.17:  Measured differences between near-roof air temperatures and reference ambient/freestream air temperatures (8m above 
the roofs) at: a) Nowra, b) Shellharbour and c) Wetherill Park.  The distributions in these plots include data from all 1.5m masts that 
were not attached directly to HVAC unit inlets, throughout the entire three 6-week monitoring periods.  Times are expressed in 
Australian Eastern Standard Time (AEST).  Each box in the plots represents a distribution: the whisker outer limits denote the minimum 
and maximum measured values, the box limits denote the first and third quartiles and the line crossing the box denotes the distribution 
median. 
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3.5.4 Empirical Model for the Estimation of Above-Roof Temperatures 

Results presented in the previous sections provide valuable insights into the air temperatures that can occur near large 
roofs, but technically they only represent the buildings that were studied and the weather conditions that occurred during 
the experiments.  To allow the estimation of near-roof temperatures in cases other than those measured, it was 
necessary to identify which parameters (e.g. weather characteristics, roof surface temperature, etc.) influenced the air 
temperature field close to the roofs, and to generate an equation to describe such influences.  This equation could then 
be applied in BPS, to estimate the temperature of air entering rooftop HVAC equipment.  

A common approach to this kind of problem in the field of fluid dynamics would be to consider a highly simplified version 
of the case at hand, and rely on similarity arguments previously established for the simple, idealised flow.  In the current 
case, two similarity arguments were identified which may have been suitable: the Monin-Obukhov similarity argument 
(Monin & Obukhov 1954), which is commonly applied to studies of the atmospheric surface layer (Businger et al. 1971; 
Dyer 1974; Garai, Kleissl & Sarkar 2014; Högström 1988; Paulson 1970; Stull 1988), and a similarity argument proposed 
by Wang and Castillo (2003) for thermal boundary layer development over a flat heated plate (which was developed 
further by Araya et al. (2012); Wang, Castillo and Araya (2008)).  However, the latter formulation did not include the 
effects of buoyancy (i.e. it was developed for forced convection only), and both arguments required, as inputs, variables 
that are not readily available in BPS, e.g. friction velocity or thermal boundary layer depth, or were not available in the 
experimental dataset, e.g. vertical heat flux.  Therefore, neither of these existing descriptions of thermal boundary layers 
were appropriate for the case at hand. 

An alternative approach to form an above-roof temperature model would have been to conduct a parametric analysis 
using CFD, and then form an empirical model based on the results.  However, in the present work it was found that 
previous CFD methods and studies have been rather poorly validated for cases involving heat transfer from external 
building surfaces, especially in conditions dominated by natural and mixed convection (see Section 4 of this report).  In 
the present study a comparison of results obtained using seven different CFD techniques with experimental results, in 
cases dominated by mixed and natural convection, indicated that the accuracy of CFD may not be reliable for such 
cases.  Furthermore, the computational expense of turbulence-resolving CFD methods meant that only steady RANS-
based simulations were feasible for use in a comprehensive parametric study within the project.  Therefore, CFD was not 
used to develop the above-roof temperature model due to time and resource constraints. 

The approach that was eventually adopted was to develop an empirical model, based on experimental data from the 
three case-study buildings, and involving only those parameters available in BPS software and the experimental 
datasets.  Thus, the model that was produced is limited in applicability to cases similar to those studied here (i.e. large-
footprint, ~10,000–100,000m2, buildings with relatively flat roofs). 

A schematic diagram of the impact of the above-roof temperature field above a building on the HVAC equipment and 
thermal loads is shown in Figure 3.18. The above-roof temperature model developed in this section is later used to 
determine the impact on the energy consumption of the HVAC system by virtue of the fact that a roof-mounted outdoor 
heat exchanger, or cooling tower, and outdoor air ventilation intake will be in contact with air at a different temperature to 
the local ambient, or freestream, temperature.  

 

Figure 3.18:  Schematic of the nomenclature and key parameters used to correlated the above-roof temperature 
experimental results. 

 

First, it was convenient to define a dimensionless temperature: 

 𝑇∗(𝑧) =
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Here, 𝑇(𝑧) is the local air temperature as a function of height, z, above the roof, 𝑇∞ is the local reference 

ambient/freestream or ‘freestream’ air temperature and 𝑇𝑠 is the mean (spatially averaged) roof surface temperature.  

Thus, 𝑇∗ = 0 at locations where the air temperature was equal to the local ambient/freestream temperature, and 𝑇∗ = 1 at 

locations where the air temperature was equal to the mean roof surface temperature. 

Horizontal variations in the above-roof temperature field were not considered in this analysis.  Such variations arise due 
to various influences including flow separation at the roof leading edge and near rooftop obstructions, and the 
development of a thermal boundary layer in the streamwise direction.  In reality, the variations in surface temperatures 
could be significant.  However, since the above-roof temperature model is intended for use in BPS, in which roofs are 
typically treated in a surface-averaged manner, it was preferable that the above-roof temperature model would also 
operate in this way.   

Furthermore, it was not feasible to produce a comprehensive model that could robustly account for the influence of any 
roof shape or arrangement of rooftop obstructions, given any set of wind direction, wind speed, atmospheric stratification, 
etc. within the scope of the current project. 

The vertical temperature profile above the roof surface was then be defined by a single function at any given point in 
time.  It was expressed in a form analogous to the standard isothermal logarithmic velocity profile, described by Richards 
and Norris (2011): 

 𝑇∗(𝑧) = 1 −
ln (

𝑧+𝛼

𝛼
)

ln (
𝑧𝑟𝑒𝑓+𝛼

𝛼
)
  (3.2) 

where 𝑧𝑟𝑒𝑓  is a reference height, at which the temperature is equal to the reference local ambient/freestream 

temperature.  There is no direct physical interpretation of the length scale 𝛼, although it is analogous to the ground 

aerodynamic roughness length in the standard isothermal velocity profile. In Equation (3.2) 𝛼 effectively accounts for the 

combined effects of: 1) the roof surface roughness; 2) turbulence introduced by flow separation at the roof leading edge; 
and 3) buoyancy.  Equations (3.1) and (3.2) can be combined to give the temperature at height 𝑧, as follows: 

 𝑇(𝑧) = 𝑇𝑆 − (𝑇𝑆 − 𝑇∞)
ln (

𝑧+𝛼

𝛼
)

ln (
𝑧𝑟𝑒𝑓+𝛼

𝛼
)
 (3.3) 

Statistical analysis of the experimental data revealed that 𝛼 was quite closely correlated with the Richardson number, 𝑅𝑖, 
which is a non-dimensional number representating the ratio between buoyancy and inertial effects in fluid flows.  
Equation (3.3) was fitted to experimental data from the three buildings, with 𝑧𝑟𝑒𝑓 set at 8m and 𝑇∞which produced the 

following relation: 
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 (3.4) 

The five distinct functional forms for 𝛼 in Equation (3.4) correspond to the stable natural, stable mixed, forced, unstable 

mixed and unstable natural convective regimes, respectively.  Equations (3.3) and (3.4) facilitate the estimation of air 

temperatures above large roofs, given only the input parameters 𝑇∞, 𝑇𝑠, the local reference/freestream wind speed, �̅�𝑟𝑒𝑓, 

and the characteristic length scale of the building, 𝐿.  A somewhat more detailed outline of the procedure is presented in 

Appendix A of this report. 

Despite the relative simplicity of the model, it was found to correlate the measured near-roof air temperatures with 
reasonably high accuracy (see Figure 3.19).  The RMS deviation between model-predicted temperatures and measured 
values was 0.65°C, whereas, if the local ambient/freestream temperatures were used directly as a measure of the 
above-roof temperatures then the RMS deviation would have been 1.67°C.  The mean deviation between measured and 
model-predicted near-roof temperatures, at times of stable (roof surface colder than ambient) and unstable stratification 
(roof warmer than ambient), were 0.04°C and 0.09°C, respectively. 

Clearly the above-roof temperature model described above provides a much more realistic measure of the temperatures 
of air directly affecting the HVAC equipment on the roof of a building than if the local ambient/freestream temperature 
were to be used (as is current practice in building performance simulations). 
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Figure 3.19:  Frequency plots of the differences between the reference ambient/freestream air temperature (measured at the 8m-high 
mast) and near-roof air temperatures (spatially averaged across each roof) at the three elevations, for all three buildings. The data has 
been separated into periods of stable (left) and unstable (right) stratification, at three heights above the roof surface (1.5m, 0.5m and 
0.15m, shown at top, middle and bottom, respectively). a) The solid red line shows the frequency of the difference between the 
measured near-roof air temperatures for all three buildings and the corresponding correlation using the above-roof temperature model 
represented by Equations 3.3 and 3.4. b) The dashed black line shows the frequency of the difference between the measured near-roof 
air temperatures for all three buildings and the corresponding ambient temperature (at 8m above the roof), i.e. the discrepancy between 
actual above-roof temperatures and the local ambient temperature. 

3.5.5 Local Influence of HVAC Equipment 

Comparison of air temperatures measured directly at the inlets of rooftop HVAC equipment with those measured on 
nearby 1.5m masts revealed that air entering the HVAC units did not always exhibit the same vertical temperature profile 
that was observed above clear roof surfaces.  Air entering air-cooled heat exchangers in Shellharbour and Wetherill Park 
matched the prevalent vertical temperature profile most of the time, but were much higher in temperature on occasions 
(see Figure 3.20).  The temperature elevation (above ambient/freestream) of air entering a rooftop air-handling unit in 
Shellharbour was typically ~50% greater than that measured at similar heights nearby (see ‘a’ in Figure 3.21).  Air 
entering a partially shaded wet cooling tower in Wetherill Park was similar in temperature to air nearby, but did not exhibit 
a distinct vertical profile (see ‘b’ in Figure 3.21). 
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Figure 3.20:  Comparison of temperatures measured at the inlets of rooftop air-cooled heat exchangers with those measured above the 
roof surface on nearby 1.5m masts at: a) Shellharbour and b) Wetherill park.  Data have only been included from times at which the 
local roof surface temperature was more than 10°C hotter than the ambient/freestream air temperature.  Each box in the plots 
represents a distribution: the ‘whisker’ outer limits denote the minimum and maximum measured values, the box limits denote the first 
and third quartiles and the line crossing the box denotes the distribution median. 

Several factors are likely to have contributed to the observed air temperatures at the inlets of these HVAC units.  The 
abovementioned air-handling unit (‘a’ in Figure 3.21) was installed on a raised steel mesh platform, partially enclosed by 
steel sheets at the sides.  Air drawn into the duct must have flowed from above the steel enclosure, or through a 0.05-
0.45m high gap under the enclosure walls.  Thus, the air-handling unit did not draw air directly from the thermal boundary 
layer at the same height as its inlet duct.   

The steel enclosure and other surrounding equipment would also have absorbed solar radiation and transmitted heat to 
the surrounding air, which could have affected the temperature of air entering the unit.  The air-cooled heat exchangers 
(in Figure 3.20) were not enclosed at the sides.  These units did draw in air at temperatures matching the surrounding 

thermal boundary layer most of the time.  The significantly higher air temperatures (approaching 𝑇∗ = 1) that were 

measured at their inlets a small portion of the time could have been caused by abnormal unit operation, wherein the unit 
pumps or compressors were running but the fans were not.  In such a scenario, heat could have been convected from 
the coil to the temperature sensors at their inlets.   

The area surrounding the wet cooling tower (‘b’ in Figure 3.21) was shaded by expanded metal mesh, so a perimeter 
region of roof surface, approximately 2m wide, was not in direct sunlight.  A strong, turbulent air flow was also observed 
near this wet cooling tower, induced by fans in the unit.  Such a reduction in the solar heat flux transmitted to nearby roof 
surfaces and strong vertical mixing could explain the relatively uniform vertical temperature profile observed near this 
unit. 

a) 
a) 

b) 
b) 
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Figure 3.21:   Comparison of temperatures measured at the inlets of: a) a rooftop air-handling unit in Shellharbour, and b) a rooftop wet 
cooling tower in Wetherill Park, with those measured above the roof surface on nearby 1.5m masts.  Data have only been included from 
times at which the local roof surface temperature was more than 10°C hotter than the ambient/freestream air temperature.  Each box in 
the plots represents a distribution: the ‘whisker’ outer limits denote the minimum and maximum measured values, the box limits denote 
the first and third quartiles and the line crossing the box denotes the distribution median. 

The results discussed here demonstrated that air entering rooftop HVAC equipment does reach temperatures several 
degrees above the local ambient/freestream temperature.  However, the results also suggest that the mean inlet air 
temperature for such equipment cannot necessarily be estimated directly from measurements taken above a clear roof, 
i.e. that details of the HVAC equipment construction and operation may influence the inlet air temperature significantly. 

3.5.6 Local Influence of PV Panels 

PV panels were also found to influence the local temperature field significantly.  Comparison of air temperatures 
measured by 1.5m masts located within arrays of PV panels with those measured above nearby sections of clear roof 
revealed that air between the panels (0.15m high), tended to be significantly hotter than air at a similar height elsewhere, 
while air above the panels, at a height of 1.5m, was not influenced significantly by the PV panel arrays (see Figure 3.22).  

a) 

b) 

a) 

b) 
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Figure 3.22:  Comparison of temperatures measured within arrays of photovoltaic (PV) panels (mast shown as ) with those measured 

above the clear (uncovered) roof surface nearby (mast shown as ). a) Nowra, and b-c) Shellharbour. Data have only been included 

from times at which the local roof surface temperature was more than 10°C hotter than the ambient/freestream air temperature.  Each 
box in the plots represents a distribution: the whisker outer limits denote the minimum and maximum measured values, the box limits 
denote the first and third quartiles and the line crossing the box denotes the distribution median. 

a) 

b) 

c) 

a) 

b) 

c) 
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PV panels are likely to have influenced the local temperature field by: a) shading of the roof surface; b) absorbing solar 
radiation and transmitting the resultant heat to the surrounding air; and c) blocking air flow close to the roof surface.  The 
results presented here have given some insight into the magnitude of such effects. 

Comparisons were also made between air temperatures surrounding PV panels installed above cool and ‘non-cool’ roofs 
(see Figure 3.23).  Air temperatures in the two PV arrays were very similar: on-average, dimensionless air temperatures 
in the PV array installed over cool roofing materials were 9% and 4% cooler, at heights of 0.5m and 1.5m, respectively.  
Such small differences could be unexpected, given the known effects of cool materials on roof surface temperatures, and 
were probably caused by shading of the roof by the PV panels.  The solar reflectance of each roof material would not 
have influenced the roof surface temperatures significantly, since they were predominantly in shade.  Convective heat 
transfer from the PV panels, which were in direct sunlight, is likely to have been the primary cause for local air 
temperatures to rise above ambient/freestream. 

    

Figure 3.23:  Comparison of temperatures measured within arrays of photovoltaic (PV) panels, installed over cool and non-cool roofing 
materials in Wetherill Park.  Data have only been included from times at which the roof surface temperature was more than 10°C hotter 
than the ambient/freestream air temperature.  Each box in the plots represents a distribution: the whisker limits denote the minimum and 
maximum measured values, the box limits denote the first and third quartiles and the line crossing the box denotes the distribution 
median. 

3.5.7 Cool Roof Effects on PV Panel Temperatures 

PV panel temperatures were measured directly, within arrays of panels installed above sections of cool and ‘non-cool’ 
roofing materials in Wetherill Park.  Comparison of these measurements revealed that the cool coating did not have a 
significant effect on the PV panel temperatures.   Panel temperatures in both arrays were closely correlated with the 
incident solar heat flux, reaching values more than 30°C above ambient/freestream at times of strong solar heating (see 
Figure 3.24).  However, the mean difference between panels in each array was only 0.04°C at times of non-zero solar 
heat flux, with a maximum instantaneous deviation of 3.2°C (see Figure 3.25). 
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Figure 3.24:  Comparison of photovoltaic (PV) panel temperatures measured above cool and non-cool roofing materials. 

 

Figure 3.25:  Measured temperature differences between a photovoltaic (PV) panel installed over a cool roofing material and a PV panel 
installed over a ‘non-cool’ roofing material, plotted against the incident solar heat flux. 

PV panel efficiency tends to decrease by approximately 0.4% per 1°C increase in temperature (Dubey, Sarvaiya & 
Seshadri 2013).  Therefore, the measured differences in panel temperatures in Wetherill Park could indicate 
instantaneous differences in panel efficiency of up to 1.3%.  However, on-average, the PV panels are likely to have 
operated with equal efficiency. 

3.5.8 Comparison of Local Ambient/Freestream and Bureau of Meteorology Temperatures 

The primary purpose of the work described above was to experimentally quantify the thermal stratification above large-
roofs, and to correlate this stratification with parameters including roof surface temperature, local ambient/freestream 
temperature and wind speed. However, it was also of interest to compare the characteristics of the temperature and wind 
speed in the ambient/freestream air above the case study buildings with other weather data sources. 

Thus, the above-roof experimental data ambient/freestream temperatures (measured on the 8m-high mast) were 
compared to point-in-time data gathered from the Australian Bureau of Meteorology (BOM) weather stations nearest to 
the three case study buildings. It should be noted that BOM define ambient air temperature as that which is measured at 
a height of 1.1m over a flat, grass-covered area (Canterford 1997). The temperatures and wind speeds at such locations 
would therefore be expected to be significantly different to those in the ambient/freestream above a large building.   

On-average, temperatures measured at the top of the 8m mast and at the nearest BOM weather stations were in 
relatively close agreement (as shown in Figure 3.26).  The mean difference between the above-roof and BOM 
measurements was 0.59°C, 0.09°C and 0.89°C in the Nowra, Shellharbour and Wetherill Park cases, respectively.  
Deviations between the two sets of measurements were often on the order of 1°C; the standard deviation of differences 
between the two datasets were 1.36°C, 1.93°C and 0.93°C in the Nowra, Shellharbour and Wetherill Park cases, 
respectively. 
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Figure 3.26:  Comparison of ambient/freestream air temperatures measured at the top of the 8m masts, at: a) Nowra, b) 
Shellharbour and c) Wetherill Park, and those measured at the nearest Bureau of Meteorology (BOM) weather stations.  
Data has been split into night-time and daytime sets, based on sunrise and sunset times. 

Deviations between temperatures 8m above the roofs and at nearby BOM weather stations were likely to have been 
caused by a number of factors including: the BOM weather stations were a considerable distance from the case study 
building; the the BOM weather station data was for a very significantly lower elevation than for the 8m mast sensors; the 
temperature and velocity profiles above the case study buildings would be significantly different to those above the flat, 
grass-covered ground where the BOM stations were located.   

The comparisons of BOM data to the 8m mast data shown in Figure 3.26 indicate that the characteristics of the 
differences were somewhat different for each case study building, as would be expected. For example, the overall 
scatter of data was larger in the case of Nowra as compared to Wetherill Park. Nevertheless it would appear that the 
general trend in all three cases was that there was a strong correlation for higher/day-time temperatures in all three 
cases. For daytime temperatures (recorded between sunrise and sunset) the mean difference between the above-roof 
and BOM measurements was 0.22°C, 0.06°C and 0.33°C in the Nowra, Shellharbour and Wetherill Park cases, 
respectively. 

However, for Nowra and Weatherill Park at lower temperatures (particularly at night-time) the temperatures recorded at 
the top of the 8m masts were somewhat higher than those recorded at the BOM stations. This is not unexpected 
because of the likely horizontal variations in the atmospheric temperature field between the experimental sites and BOM 
weather stations, and also because since atmospheric stratification is common at night-time and the mast-mounted 
sensors were 16–24m higher above the ground than the BOM data in the three cases. 

3.6 Outcomes of the Experimental Campaign 

A comprehensive set of measurements have been taken around three large-footprint buildings, over three different 6-
week monitoring periods.  In-situ monitoring of air and surface temperatures above the building roofs has quantified the 
degree to which conventional building simulation practices can misrepresent the temperature of air entering rooftop 
HVAC equipment.  In the middle of the day (between 11:30 and 12:30 AEST), at heights of 0.5–1.5m above the roofs, 
the average temperature elevation above the reference ambient/freestream air temperature (measure 8m above the 
roof) was 0.98–2.21°C.  Instantaneous temperatures at such locations occasionally exceeded the ambient/freestream 
temperature by more than 7°C.  Air above the roofs was typically 0–2°C colder than ambient/freestream at night, but did 
reach temperatures more than 6°C below ambient/freestream at times. 

An empirical model has been developed, to allow the accurate estimation of above-roof air temperatures in Building 
Performance Simulation software.  The model was able to predict above-roof temperatures from the experimental 
dataset with an RMS error of 0.65°C, which is a relatively small deviation, given the simplicity of the model and the 
significant variations in building geometry, building materials, weather conditions and surrounding topography involved in 
the experiments. 

It should be noted, that although this empirical model has been developed using well-established fundamental 
characterisations of flow regimes that apply in situations similar to those above the present large-footprint buildings (i.e. 
stable natural, stable mixed, forced, unstable mixed and unstable natural convective regimes), the data gathered was for 
a particular range of weather conditions and time of year (summer). The authors are confident that above-roof 
temperature model is therefore a good representation of above-air conditions for the type/size of case-study buildings in 
this project, and for the prediction of the impact of above-roof temperatures on cooling energy requirements in such 
relatively warm conditions. 
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However, care must be taken in applying the same above-roof temperature model to determine changes to heating 
requirements for significantly different weather conditions, particularly cold/winter conditions; at least until further 
experimental evidence can be gathered on above-roof temperatures in cold conditions to verify, or modify, the current 
above-roof temperature model for low ambient temperatures. 

Direct measurements of air temperatures at the inlets of rooftop HVAC equipment indicated that, despite the influence of 
such equipment on local air velocity and temperature fields, air entering the units differed from the reference 
ambient/freestream air temperature by a similar magnitude as air at the same height above the roof, further from the 
HVAC equipment.  However, air entering rooftop equipment that was partially enclosed in a steel fence was elevated 
~50% higher in temperature than air at the same height nearby.  These results confirmed that air entering rooftop HVAC 
equipment during the day is often 1–2°C hotter than is assumed by conventional building simulation practices, and also 
highlighted the effects that details of the HVAC equipment design may have on inlet temperatures. 

Air temperatures within arrays of PV panels were measured, and PV panel temperatures were measured directly.  The 
presence of the panels was observed to increase air temperatures significantly at a height of 0.15m, but had relatively 
little effect on air temperatures 1.5m above the roofs.  Comparison of PV panel temperatures measured above sections 
of cool and ‘non-cool’ roofing materials revealed that the cool coating did not have a significant effect on the PV panel 
temperatures.  Panels in both arrays reached temperatures more than 30°C above ambient/freestream at times of strong 
solar heating, but the mean difference in temperature between panels in each array was only 0.04°C at times of non-zero 
solar heat flux.  PV panel temperatures were only measured at one site, so further investigation would be worthwhile.  
However, in the configurations that we measured, no reduction in panel temperature was observed which would cause a 
significant increase in the efficiency. 

In addition to the abovementioned outcomes, the experimental campaign also produced a comprehensive and rigorously 
collected dataset, suitable for further analysis, and for the validation of CFD simulations.  Useful data was obtained, 
related to the temperatures that roof surfaces can reach, the optical properties of aged roofing materials, wind flow 
around buildings, and the uncertainty inherent in several measurement techniques.  Data from the experiments has been 
used in subsequent sections of this report, and will be utilised in future research. 
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4 Computational Fluid Dynamics Simulations 

The importance of validation in CFD studies has been outlined in many best-practice guidelines and scientific reviews, 
e.g. Blocken (2014); Britter and Schatzmann (2007); Franke et al. (2007); Stathopoulos (2002); Tominaga and 
Stathopoulos (2013).  Previous comparisons between CFD simulations of heat transfer at building external surfaces and 
experimental results have exposed inherent flaws in some CFD techniques.  In several cases, simulations based on the 
Reynolds-averaged Navier-Stokes (RANS) equations have not been able to accurately replicate convective heat transfer 
at the top or side surfaces of buildings, i.e. those surfaces parallel with the mean wind direction (Defraeye, Blocken & 
Carmeliet 2010; Liu, Srebric & Yu 2013; Montazeri & Blocken 2017).  Turbulence-resolving techniques, such as wall-
modelled large eddy simulation (WMLES) and delayed detached eddy simulation (DDES), have produced more accurate 
results in some cases (Hu, Cui & Zhang 2018; Iousef et al. 2017; Liu, Srebric & Yu 2013; Ničeno, Dronkers & Hanjalić 
2002).  However, even these more complex techniques have produced errors of approximately 40% in some simulations 
of heat transfer at building external surfaces (Boppana, Xie & Castro 2013; Li et al. 2016; Nazarian & Kleissl 2016). 

One significant challenge in CFD simulations of urban thermodynamics is in establishing a method that will produce 
accurate results within the full range of Richardson numbers (𝑅𝑖) relevant to the atmospheric boundary layer.  Both 

stable and unstable stratifications are often encountered in such flows, with forced, mixed and natural convection from 
surfaces exposed to the sun and sky.  While several of the abovementioned validation studies went on to apply the 
tested CFD methods to flows involving natural and mixed convection, only one of the studies compared experimental 
results to simulations of mixed convection (Boppana, Xie & Castro 2013), and none validated a CFD methodology for 
simulating natural convection from buildings. 

The high Reynolds numbers (𝑅𝑒) encountered in urban flows pose an additional challenge to CFD practitioners.  Many of 

the abovementioned validation studies have replicated wind-tunnel experiments, and therefore involved flows with 𝑅𝑒 

several orders of magnitude smaller than those relevant to large buildings.  In order to resolve boundary layers down to 
the viscous sub-layer at such high 𝑅𝑒, the computational grid must have extremely fine resolution in the wall-normal 

direction at solid boundaries.  The use of wall functions can alleviate requirements for a fine near-wall grid, but such 
models are not universally applicable in cases of heat transfer (Boppana, Xie & Castro 2013; Defraeye, Blocken & 
Carmeliet 2011, 2012), so it is important that their influence on simulation accuracy be assessed when they are applied. 

Defraeye, Blocken and Carmeliet (2011) proposed a modified wall function for simulations of heat transfer at building 
external surfaces.  Its performance has been compared to RANS-based CFD simulations conducted without wall 
functions, for cases involving forced (Defraeye, Blocken & Carmeliet 2011), mixed (Defraeye, Blocken & Carmeliet 2012) 
and natural (Allegrini et al. 2012) convection.  However, this approach does not appear to have been validated with 
experimental data before. 

4.1 Aims and Objectives 

It was originally intended that CFD would be used in the present study, to investigate the sensitivity of above-roof 
temperature fields to various parameters.  However, it was first necessary to address some of the open questions 
discussed above, in order to: 

1. Determine whether CFD could accurately simulate above-roof temperature fields in cases dominated by forced, 
mixed and/or natural convection; and 

2. Assess the benefits and drawbacks of wall functions in simulations of such flows, with respect to simulation 
accuracy and computational expense. 

To achieve these aims, a series of objectives were established: 

 Establish test cases, based on the experimental work described in Section 3, to represent urban flows dominated 
by mixed and natural convection; 

 Compare the performance of various CFD methods in replicating these test cases, including RANS-based and 
turbulence-resolving methods, as well as methods adopting conventional wall functions and the adapted wall 
function proposed by Defraeye, Blocken and Carmeliet (2011). 

 Assess the suitability of CFD for a parametric study of above-roof air temperatures, in terms of simulation 
accuracy and computational expense. 

4.2 Test Cases 

Two test cases were established, corresponding to conditions from the point-in-time measurements at the Nowra 
building.  The first case represented a typical sunny morning, with a high solar heat flux and low wind.  The second case 
came from the afternoon of the same day, when it was still sunny but the wind speed had increased.  Calculation of 𝑅𝑒 

and 𝑅𝑖, based on the average roof surface temperatures, ambient/freestream air temperatures, mean wind speeds at a 

height of 10m and representative building length scale of 100m, revealed that the first case could be characterised by 
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natural convection, with 𝑅𝑒 ≈ 1.0×107 and 𝑅𝑖 ≈ 48.7, and that the other was within the mixed convective regime, with 

𝑅𝑒 ≈ 4.2×107, 𝑅𝑖 ≈ 1.59.  

4.3 Methodology 

CFD simulations were conducted using the software ANSYS Fluent 18.2, treating each case as quasi-steady.  Simulated 
air temperatures and velocities near the roof surface were compared to the corresponding experimental results. 

4.3.1 Computational Domains and Grids 

A computational domain was established, including a simplified version of the building geometry (see Figure 4.1).  The 
convention in CFD simulations of isolated buildings is generally to size the computational domain based on the building 
height.  However, in cases involving wide, low buildings this can lead to domains that are too small, which can influence 
results near the building.  The domain in the present study had dimensions such that the blockage ratio due to the 
building geometry was less than 3%.  The mean wind direction in both test cases was within 5° of being normal to the 
building eastern wall, so all simulations were run with a single inlet and outlet, aligned with this wind direction.  The 
ground surrounding the building was divided into three regions, representing the grass-covered area upwind of the 
building, the carpark and service road immediately surrounding the building and the suburban area downwind of the 
building.  This allowed each terrain type to be assigned different boundary conditions. 

 

    

Figure 4.1:  Computational domain used for CFD simulations of the Nowra building: a) overlayed with an aerial view of the site, and b) 
shown with solid surfaces coloured according to the temperature boundary conditions used for the mixed convection case. 

 

N 
 

a) 

b) 
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Two computational grids were generated.  The distance from solid boundaries (i.e. the ground and building surfaces) to 
the centre of the nearest computational cell was fixed at 5mm in one grid, and 0.05mm in the other.  These settings 
resulted in one grid suitable for use with wall functions, with dimensionless wall distances (often referred to as y+) of 
approximately 35 and 100 in the natural and mixed convection cases, respectively, and a second grid suitable for use 
without wall functions, with y+ < 1. 

Both grids were non-conformal and dominated by hexahedral elements (see Figure 4.2).  Iousef et al. (2017) have 
shown that cases similar to those considered here can be simulated accurately using non-conformal grids, despite the 
abrupt changes in grid spacing that they exhibit.  A refinement ratio of 1.5 was used to produce fine, medium and coarse 
versions of the grids, for use in a grid sensitivity analysis.  The maximum cell skewness was maintained below 0.9 in 
each mesh. 

 

Figure 4.2:  Cross-sections of the non-conformal computational grid used for CFD simulations with wall functions: a) showing the entire 
domain, and b-c) showing the grid near the building, with increased magnification. 

4.3.2 Boundary Conditions 

The aerodynamic roughness of the open fields upwind of the building was determined to be approximately 24mm, based 
on air velocity measurements from the point-in-time monitoring campaign.  Standard logarithmic profiles (Richards & 
Norris 2011) were established, based on the terrain roughness and air velocity measurements taken upwind of the 
building (see Figure 4.3).  Logarithmic profiles were also fitted to the vertical mean temperature profile measured upwind 
of the building.  These profiles were fixed at the domain inlet during CFD simulations.  In simulations using DDES and 
WMLES, the vortex method was used to superimpose synthetic eddies over the mean inlet flow.  ‘Symmetry’ boundary 
conditions (i.e. zero flux of all quantities) were fixed at the lateral boundaries, the static gauge pressure at the outlet was 
fixed at zero, and the top boundary was set with the same fixed velocity and temperature as the top of the inlet. 

Solid surfaces within the domain were assigned appropriate aerodynamic roughness and constant temperature boundary 
conditions, except for the walls of the building, which were set as adiabatic.  Temperatures from the aerial infrared 
photographs were mapped onto the building roof, and average temperatures from the photographs were assigned to 
three ground regions surrounding the building (see Figure 4.1). 

Outlet Inlet 

c) 

b) 

a) 
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Figure 4.3:  Vertical profiles of mean wind velocity and mean air temperature from the natural convection (NC) case and mixed 
convection (MC) case, which were imposed at the domain inlet during computational fluid dynamics (CFD) simulations. 

Preliminary simulations were conducted in a long, empty two-dimensional domain, with a similar grid spacing to three-
dimensional grids, and the boundary conditions described above.  Results from these trials were checked to ensure that 
the grid and boundary conditions produced a horizontally homogeneous atmospheric boundary layer.  Any deviations 
from the inlet profiles, along the domain length, would have indicated that the boundary conditions and/or grid were 
inappropriate for the boundary layers being simulated. 

4.3.3 Computational Settings 

Simulations were run using: a) the incompressible steady RANS equations with the realisable k-ε turbulence model and 
scalable wall functions (Launder & Spalding 1974); b) the incompressible steady RANS equations with the realisable k-ε 
turbulence model and wall functions modified according to (Defraeye, Blocken & Carmeliet 2011); c) DDES with the 
realisable k-ε turbulence model and scalable wall functions; and d) WMLES, according to the formulation proposed in 
(Shur et al. 2008).  Each technique was tested with and without wall functions.  (Only one RANS simulation needed to be 
run without wall functions for each case, since techniques ‘a’ and ‘b’, above, were equivalent when run without wall 
functions.)  The two-layer low Reynolds number model available in Fluent was applied in simulations without wall 
functions.   Buoyancy effects were included in all simulations using the Boussinesq approximation. 

The coupled pressure-based solver was used, with least-squares cell-based spatial discretisation of gradients and 
second order discretisation of advection terms in all governing equations.  DDES and WMLES were conducted with time-
steps of 0.04s, which kept the cell courant number below one.  These transient simulations were initialised with the 
RANS-based solutions, allowed to run until the flows reached quasi-steady states, then run and sampled until the time-
averaged results stabilised.  In total, the transient simulations spanned 5–10min of simulated time. 

4.4 Results and Discussion 

4.4.1 Boundary Layer Horizontal Homogeneity 

Simulations conducted within the long, empty, two-dimensional domain produced vertical profiles of mean wind speed 
and temperature that remained virtually unchanged along the domain (see Figure 4.4).  Air temperatures within 
approximately 10m of the ground did present horizontal variations of up to 0.2°C, which was probably due to the inlet 
temperature profiles being based entirely on experimental data, rather than on theoretical profiles fitted to experimental 
data.  Some small variations in the mean velocity and temperature profiles were also observed at a height of 21m, where 
a non-conformal grid interface existed.  However, the boundary layer profiles above and below this interface were not 
affected.  These results confirmed that, in the subsequent three-dimensional simulations, the boundary layer profiles 
would not vary significantly from those imposed at the inlet, before interacting with the building. 
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Figure 4.4:  Mean vertical profiles of wind speed and temperature, simulated at various distances (x) from the inlet of a long, empty, two-
dimensional domain.  A similar computational grid to the three- dimensional non-conformal grid was used, with boundary conditions 
matching the natural convection (NC) and mixed convection (MC) cases. 

4.4.2 Above-Roof Air Temperatures 

Air temperatures simulated close to the building roof were relatively close to the experimental values in the mixed 
convection case (see Figure 4.5), but deviated significantly from the experimental values in the natural convection case 
(see Figure 4.6).  The RMS deviation between CFD and experimental results varied from 0.60°C (RANS without wall 
functions) to 1.48°C (RANS with modified wall functions) in the mixed convection case, and from 0.93°C (RANS with 
modified wall functions) to 2.05°C (WMLES with wall functions) in the natural convection case.  Deviations of this size 
may seem insignificant, but they are of the same order of magnitude as the temperature differences of interest (i.e. the 
elevation of air temperatures near the roof above ambient/freestream).  In terms of dimensionless temperatures, the 
mean deviation between CFD and experimental results within each simulation was between 18% and 64% in the mixed 
convection case, and between 134% and 435% in the natural convection case. 

The resolution of large-scale turbulence in regions away from solid surfaces, using DDES or WMLES, did not 
consistently improve the agreement between CFD and experimental results.  Some improvement was observed in the 
natural convection case, especially when the DDES technique was employed.  However, RANS-based simulations 
conducted without wall functions produced comparable results, for a significantly lower computational cost. 

The low Reynolds number model, applied in simulations without wall functions, did not consistently improve the 
agreement between CFD and experimental results either.  The only combination of CFD technique and flow case which 
were significantly improved when wall functions were not used, was RANS in the natural convection case. 

The wall function modification proposed by Defraeye, Blocken and Carmeliet (2011) influenced results significantly in 
both natural and mixed convection cases.  The increased turbulent Prandtl number enhanced vertical mixing, which 
increased the depth of the thermal boundary layer above the roof surface.  In the natural convection case this effect 
improved the agreement between CFD and experimental results significantly.  However, it is not clear whether the wall 
function modification addressed the cause of disagreement between experimental results and CFD results obtained with 
standard wall functions, or whether it ‘masked’ the underlying issue.  In the mixed convection case, wall function 
modification led to significant over-prediction of most near-roof air temperatures. 

All seven of the CFD techniques tested here treat turbulence near solid boundaries in a time-averaged, RANS-based 
way.  The action of turbulence in the region of high temperature gradient, close to the roof surface, would have a large 
impact on the temperature profile that forms there, and on the rate of convective heat transfer from the surface.  It is 
probable that the discrepancies between CFD and experimental results discussed here have been caused, at least in-
part, by the simplified representation of turbulence near solid boundaries.  The large discrepancies observed in the 
natural convection case appear to indicate an under-estimation of buoyancy-driven vertical mixing by these methods.  
The improved results obtained using RANS with modified wall functions in that case demonstrate that it may be possible 
to rectify the issue relatively simply, within the framework of computationally inexpensive steady RANS simulations.  
However, it appears that a fixed increase in turbulent Prandtl number does not produce accurate results for both natural 
and mixed convection.  One solution could be to set the turbulent Prandtl number as a variable, since it does vary in 
reality (Kays 1994). 
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Figure 4.5:  Comparison of time-averaged dimensionless air temperatures from CFD with the corresponding experimental results in the 
mixed convection case.  Results are presented from simulations with and without wall functions (top and bottom, respectively), using 
RANS-based simulations (left), RANS-based simulations with modified wall functions (MWF; centre-left), DDES (centre-right) and 
WMLES (right). 

 

Figure 4.6:  Comparison of time-averaged dimensionless air temperatures from CFD with the corresponding experimental results in the 
natural convection case.  Results are presented from simulations with and without wall functions (top and bottom, respectively), using 
RANS-based simulations (left), RANS-based simulations with modified wall functions (MWF; centre-left), DDES (centre-right) and 
WMLES (right). 
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4.4.3 Wind Speeds 

In the case of wind speeds near (<1m from) the roof surface, CFD replicated experimental results reasonably well in the 
natural convection case (see Figure 4.8), but not to the same degree in the mixed convection case (see Figure 4.7).  The 
mean deviation between CFD and experimental results within each simulation ranged from 5.2% to 22.3% in the natural 
convection case, which is a relatively close agreement, given the significant uncertainty in the experimental results.  In 
the mixed convection case, the mean deviation ranged from 52.6% to 143%.  It is possible that omission of the row of 
trees, upwind of the building, caused the significant overestimation of wind speeds in that case. 

 

Figure 4.7:  Comparison of time-averaged wind speeds from CFD with the corresponding experimental results in the mixed convection 
case.  Results are presented from simulations with and without wall functions (top and bottom, respectively), using RANS-based 
simulations (left), RANS-based simulations with modified wall functions (MWF; centre-left), DDES (centre-right) and WMLES (right).  
Whiskers denote the estimated experimental uncertainty of ±20%. 

 

Figure 4.8:  Comparison of time-averaged wind speeds from CFD with the corresponding experimental results in the natural convection 
case.  Results are presented from simulations with and without wall functions (top and bottom, respectively), using RANS-based 
simulations (left), RANS-based simulations with modified wall functions (MWF; centre-left), DDES (centre-right) and WMLES (right).  
Whiskers denote the estimated experimental uncertainty of ±20% 
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4.4.4 Sensitivity to Boundary Conditions 

To investigate whether uncertainty in the roof surface temperature boundary condition (due to disagreement between the 
thermal images and surface temperature probe readings) could be the primary cause of discrepancies between CFD and 
experimental results, a simulation was run with an adjusted roof surface temperature boundary condition.  The surface 
temperatures from the thermal images were increased by 5.14°C, so that there was zero mean difference between the 
image and the surface probe measurements.  The adjusted roof surface temperature profile was then set as a boundary 
condition in a RANS simulation of the natural convection case.  The adjusted boundary condition reduced the deviation 
between CFD and experimental results slightly, but did not appear to address the primary cause of such deviation (see 
Figure 4.9).  The RMS deviation was reduced from 1.98°C to 1.66°C; in terms of the dimensionless temperature, this 
was a reduction in the mean deviation from 402% to 335%. 

 

Figure 4.9:  Comparison of results obtained using the unaltered roof surface temperature profile from the thermal images (left), with 
those obtained using an adjusted roof surface temperature profile, closer to the values measured by surface temperature probes (right).  
The plots depict time-averaged dimensionless air temperatures from CFD and the corresponding experimental results in the natural 
convection case.  Both simulations were conducted using RANS with scalable wall functions. 

4.5 Conclusion 

Two flow fields above a CFD model of the case-study building and characterised by natural and mixed convection, 
respectively, were simulated using seven different CFD techniques.  Air temperatures simulated near the roof of an 
isolated large-footprint building were compared with experimental data.  The RMS deviation between CFD and 
experimental results within each simulation was typically in the range 0.5–2°C, which may seem insignificant, but is of 
the same order of magnitude as the temperature differences of interest (i.e. the elevation of air temperatures near the 
roof above ambient/freestream).  In terms of dimensionless temperatures, the mean deviation between CFD and 
experimental results within each simulation was between 18% and 64% in the mixed convection case, and between 
134% and 435% in the natural convection case. 

Wind speeds simulated 1m above the building roof matched experimental measurements reasonably well in the natural 
convection case, with mean differences between CFD and experimental results in each simulation ranging from 5.2% to 
22.3%.  In the mixed convection case, the mean differences ranged from 52.6% to 143%, which could have been caused 
by the omission of a row of trees, upwind of the building, from the computational domain. 

The CFD techniques that were tested involved turbulence-resolving and RANS-based methods, conducted with standard 
wall functions, modified wall functions and low-Reynolds number models (i.e. without wall functions).  In terms of these 
important differences, several observations can be made: 

 The resolution of large-scale turbulence in regions away from solid surfaces (using WMLES or DDES) produced 
results somewhat closer to the experimental values in the natural convection case, when wall functions were used.  
However, no significant improvement was observed in the mixed convection case, or when wall functions were not 
used in the natural convection case. 

 The use of a low Reynolds number model instead of wall functions did not consistently improve results.  Only 
RANS-based simulations of the natural convection case were improved significantly by such an approach. 

 The wall function modification proposed by Defraeye, Blocken and Carmeliet (2011) increased the depth of the 
thermal boundary layer above the roof surface significantly in both test cases.  This brought the CFD simulations 
into closer agreement with experimental results in the natural convection case, but caused a significantly larger 
discrepancy between CFD and experimental results in the mixed convection case. 
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All seven of the CFD techniques tested in the present work treat turbulence near solid boundaries in a time-averaged, 
RANS-based manner, which could be the primary cause of discrepancies between CFD and experimental results in the 
natural convection case.  The computational expense of techniques that resolve turbulence all the way to solid 
boundaries (e.g. large eddy simulation or direct numerical simulation) currently render them impracticable for simulations 
of urban flows.  The relatively good performance of the modified wall functions in the natural convection case appears to 
indicate that this is a good approach for natural convection cases.  However, no CFD method currently appears to exist 
that can reliably simulate above-roof temperature fields in the full range of flow regimes, i.e. cases characterised by 
forced, mixed and/or natural convection. 

It is important to note that the study presented here was limited in scope and included several simplifications and 
assumptions, e.g. that the test cases could be treated as pseudo-steady and that simplification of the building geometry 
did not significantly affect results.  Further investigation, including an assessment of uncertainty in the experimental 
results and CFD boundary conditions, is required before definitive conclusions can be drawn from the results presented 
here.  However, the body of existing evidence, from this work and other studies looking at similar problems (Boppana, 
Xie & Castro 2013; Defraeye, Blocken & Carmeliet 2010; Li et al. 2016; Liu, Srebric & Yu 2013; Montazeri & Blocken 
2017; Nazarian & Kleissl 2016), indicates that care should be taken when conducting CFD simulations of heat transfer 
from large external surfaces of buildings. 
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5 Building Performance Simulations 

Building performance simulation (BPS) has been used to estimate the effects of elevated above-roof temperatures on 
building energy consumption.  BPS using reputable software is known to provide a reliable representation of the 
dynamic, connected and non-linear physical processes that dictate the performance of buildings (Clarke & Hensen 
2015).  

5.1 Aims and Objectives 

The BPS were conducted with two primary aims: 

1. Estimate the influence of cool roofs on the annual energy demand of large-footprint buildings in Australian 
climates, taking into account the effects of the near-roof temperature field on rooftop equipment; and 

2. Quantify the difference between BPS results that do and do not take the above-roof temperature field into 
account. 

Several objectives were set, in order to address these aims: 

 Select an appropriate convective heat transfer coefficient (CHTC) algorithm for the present case. The selection of 
an appropriate CHTC was critical in the present study, since it directly influenced the heat flux through the roof 
structure and the temperature of air above the roof. 

 Develop a method to include the effects of the above-roof temperature field on rooftop HVAC equipment in BPS. 

 Investigate the sensitivity of BPS to various building design parameters including roof shape, inclusion or not of a 
separate roof cavity space, building thermal mass, and the number of building storeys.  Results from this 
investigation were used to guide the design of case-study building models for further investigation. 

 Develop case-study building models, based on building codes and standards, observations from the experimental 
campaign, and other existing information. 

 Conduct BPS of each case-study building in a comprehensive set of representative Australian climate zones, with 
various cool and ‘non-cool’ roofing materials, and with and without the effects of the above-roof temperature field 
taken into account. 

5.2 Simulation Methodology 

BPS were undertaken using using EnergyPlus v8.9 with the simulation manager jEPlus v.1.7.2 (Zhang 2011). 
EnergyPlus employs the heat balance approach for building thermal load calculations (Crawley et al. 2001). 

5.2.1 Climate 

Weather conditions corresponding to Reference Meteorological Years (EnergyPlus 2006) were employed in the BPS.  
Reference Meteorological Years were developed for the Australia Greenhouse Office, and comply with the Building Code 
of Australia.  Seven climate zones were included in investigation, corresponding to zones 1–7 described in the Australian 
National Construction Code 2016 (NCC2016; Australian Building Codes Board (2016)); the zones are plotted on a map 
in Figure 5.1 and the cities used to represent each zone are presented in Table 5.1.  It should be noted that some spatial 
variations in climate also exist within the climate zones, thus the results for seven cities modelled here cannot be taken 
to provide a comprehensive representation of all Australian climates. 

Table 5.1:  Australian cities that were used to represent each of the seven climate zones investigated. 

Climate Zone City 

1 Darwin 

2 Brisbane 

3 Alice Springs 

4 Dubbo 

5 Sydney 

6 Melbourne 

http://www.abcb.gov.au/index.cfm?fuseaction=DocumentView&DocumentID=168
http://www.abcb.gov.au/index.cfm?fuseaction=DocumentView&DocumentID=168
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7 Hobart 

 

Figure 5.1:  Climates Zones for thermal design (Australian Building Codes Board, 2016); zones 1–7 were included in the BPS study. 

5.2.2 Sizing of HVAC Equipment 

It was assumed that internal temperature set-points were always met in the BPS.  The automatic sizing function in 
EnergyPlus was used to size HVAC equipment in each simulation.  Thus, the nominal system cooling and heating 
capacities were 1.15 and 1.25 times the maximum cooling and heating demands, respectively, in each simulation.  
These design factors were based on the recommendations of ASHRAE (DesignBuilder 2018). 

5.2.3 External Convective Heat Transfer Coefficients 

Previous studies have attributed much of the ‘second order’ savings offered by cool roofs to reductions in the heat 
conducted through the roof structure, over and above reductions predicted by conventional BPS (Carter 2011; Carter & 
Kosasih 2015).  The selection of an appropriate CHTC model was crucial in the present work, since the CHTC has a 
direct impact on the simulated roof surface temperature, and therefore a) influences the heat flux through the roof 
structure, and b) influences the estimated above-roof air temperature. 

Eighteen existing CHTC models were reviewed (Costanzo et al. 2014; EnergyPlus 2006; Mirsadeghi et al. 2013).  Only 2 
of the reviewed models were based on experimental data from the roofs of full-scale buildings (see  Hagishima and 
Tanimoto (2003) and Clear, Gartland and Winkelmann (2003)). Of these two models, the model by Clear, Gartland and 
Winkelmann (2003) was selected and used for external horizontal surfaces in the BPS, because it gave CHTC as a 
function of roof size (the forced convection term in the Clear model scales with L-1/5, where L is a building representative 
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length) and therefore seemed more likely to be accurate in simulating the temperatures of large-footprint building roofs.  
The Clear CHTC model was based on experiments on the flat roofs of commercial buildings, and has been shown to 
outperform a number of other CHTC models in a study concerned with simulations of buildings with cool roofs (Costanzo 
et al. 2014). 

The CHTC for external vertical surfaces was selected based on the review by Mirsadeghi et al. (2013) and the 
EnergyPlus documentation (EnergyPlus, 2010).  The most complete CHTC model based on full scale experiments, that 
takes the effects of surface roughness into account, appeared to be the DOE-2 model. This model was employed for 
external vertical surfaces in the BPS. 

5.2.4 Implementation of the Above-Roof Temperature Model 

The above-roof temperature model outlined in Section 3.5.4 of this report was implemented in a number of the BPS runs. 
In these cases the above-roof temperature model was implemented in the overall BPS as shown schematically in Figure 
5.2. 

To determine the thermal stratification above the roof from the above-roof thermal model, Tmodel(z), at any point in time 

the roof surface temperature, Ts, was determined from the standard BPS  

When implemented, the model provided adjustments to the temperature of air entering rooftop ventilation inlets, air-
cooled heat exchangers and wet cooling towers.  The inlets to the equipment were assumed to span the range of heights 
0.5–2.0m above the roof surface.  It was assumed that the air was drawn into the equipment evenly over this range of 
heights, and that structures surrounding the equipment (e.g. enclosures, fences, etc.) did not affect inlet air 
temperatures.  The mean temperature of air entering the equipment was therefore estimated as: 

 𝑇    =
1

2 − 0 5
∫ 𝑇   𝑒 (𝑧) 𝑑𝑧
2

   

 (5.1) 

where 𝑇   𝑒 (𝑧) is the air temperature predicted by the above-roof temperature model at a height of z metres above the 

roof surface (refer to Figure 3.18 for a schematic of the above-roof situation).  A more detailed description of this 
procedure is provided in Appendix A of this report. 

 

Figure 5.2:  Schematic of how the above-roof temperature model was integrated within the building performance simulation procedure. 

It should be noted that the temperature  

5.3 Preliminary Sensitivity Checks 

Preliminary BPS were undertaken, to determine the relative influence of several model details on simulation results.  
Comparisons were made between simulations of buildings with: 
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1. Flat horizontal roofs, roofs with a single pitch of 1°, and roofs with a single ridge-line from which two roof surfaces 
of equal area fall at an angle of 2°. 

2. A separate unconditioned roof cavity indoor zone, and combined roof-cavity and indoor zones. 

3. Light-weight construction (i.e. brick-veneer walls with a metal deck roof and concrete slab on ground), and heavy-
weight construction (i.e. concrete walls with a metal deck roof and concrete slab on ground). 

4. One storey, and two storeys (these buildings were 5m and 10m tall, respectively). 

These preliminary simulations were all conducted using a rectangular building model, with a footprint of 350×200m.  The 
simulated weather corresponded to Climate Zone 5 and the building insulation was set according to NCC2016 
requirements for this climate zone.  The building HVAC system was defined as a simplified air-cooled chiller system, i.e. 
the system was represented by a single empirical model, rather than modelling individual system components.  The 
above-roof temperature model was not implemented in these preliminary BPS. 

5.3.1 Outcomes from Preliminary Simulations 

The yearly thermal energy consumption for buildings simulated with the three roof geometries, with and without separate 
roof cavity zones, is presented in Table 5.2. The largest differences observed in the results were between buildings with 
and without a separate roof cavity.  Those with a separate cavity consumed between 5.0% (double-pitched roof) and 
8.1% (flat horizontal roof) less than the corresponding buildings without separate roof cavities.  The impact of roof 
geometry on yearly energy consumption was less pronounced.  The largest difference was less than 2.2%, which was 
observed between buildings with the flat horizontal and single-pitched roofs. 

Table 5.2:  Yearly cooling and heating thermal energy consumption of buildings with the six different roofs configurations. 

 Without separate cavity zone With separate cavity zone 

 
Horizontal 

Roof 
Double-

pitched Roof 
Single-

pitched Roof 
Horizontal 

Roof 
Double-

pitched Roof 
Single-

pitched Roof 

Thermal Energy Demand 
(heating + cooling) 
[kWh/m2/year] 

122.40 119.73 120.92 114.30 114.77 113.23 

 

Roof geometry also affected simulated roof surface temperatures.  However the effect was relatively small, compared to 
the difference between roof surface temperature and the ambient/freestream air temperature; the maximum difference 
between the six cases that were compared was less than 1.7°C.  The single-pitched roof was slightly colder than the 
horizontal roof in the mornings and hotter in the afternoons, which was likely to have been caused by the orientation of 
the roof with respect to the sun.  The double-pitched roof tended to be cooler than the horizontal roof during the day.  
The inclusion of a separate roof cavity zone was found to increase the diurnal change in mean roof surface temperature 
in the horizontal and single-pitched roof cases, but the opposite effect was observed in the case of the double-pitched 
roof. 

Results from simulations with one and two storeys differed very little, as did results from simulations with light-weight and 
heavy-weight construction.  The building model with two storeys required 4.91% less heating and 4.52% more cooling 
per unit floor area than the building model with one storey, resulting in a 0.87% increase in total annual thermal demand 
per unit floor area.  Setting the building materials as brick-veneer, rather than concrete, reduced the annual heating 
demand by 0.096% and increased the annual cooling demand by 0.065%, resulting in a 0.003% increase in the total 
annual thermal demand. 

5.4 Case-Study Building Models 

Two simple case-study building models were developed, to represent shopping centres and airports, respectively (see 
Figure 5.3).  Both case-study buildings had a rectangular footprint, with dimensions of 350m x 200m.  The buildings both 
had two storeys, each comprising a separate indoor zone.  The double-pitched roof geometry described above, with a 
separate unconditioned roof cavity zone, was used for both buildings. 
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Figure 5.3:  Diagram of the case-study building geometry.  Both buildings had the same geometry and orientation. 

5.4.1 Roof Optical-Radiative Properties 

Four roof materials were modelled in the BPS software: two were representative of non-cool roofs (one bare metal and 
one of a dark colour), and two were representative of cool roof products (both light coloured, one of high and one of very 
high solar reflectance, referred to herein as of ‘light’ and ‘very light’ roof colour).   

It is important to note that the properties of roofing materials, even unpainted bare metal, can change significantly over 
time, depending on the local exposure conditions, the type of coating and the specific product concerned. The 
reflectance and emittance properties selected for the three painted materials studied here were based on commercially 
available, factory pre-painted steel roofing products.   

Factory applied cool coatings, such a pre-painted steel, have been shown to change less over time than field-applied 
coatings, in the absence of biological growth (Sleiman et al. 2011).  However, roof products generally have been shown 
to exhibit  significant decreases in solar reflectance, even within the first three years of installation, due to soiling and 
degradation of the cool coating (California Energy Commission 2015; Cool Roof Rating Council 2018, Paolini et al. 
2016). Thus, results from the present study represent building performance at a particular point in time, not a consistent 
performance that could be expected over the entire life of a roofing product. 

Table 5.3:  Optical properties of the roof materials used in the BPS investigation. 

Roof Material Solar Reflectance Thermal Emittance 

Bare metal 0.67 0.3 

Dark-coloured 0.31 0.85 

Light-coloured 0.68 0.85 

Very light-coloured 0.77 0.87 

 

5.4.2 Building Construction Details 

The building fabric and construction details were set to meet minimum performance requirements outlined in the 
NCC2016 for each climate zone and roof type (Australian Building Codes Board 2016).  The thermal resistance per unit 
area (R-value) requirements in NCC2016 for different climate zones and roof solar absorptance can be found in Table 
J1.3a and Table J1.5a of the code(Australian Building Codes Board 2016).  Additional simulations were run for each 
combination of roof material and climate zone, with the maximum roof insulation required for any roof solar absorptance 
in that climate zone.  These simulations were used to investigate the performance of buildings that already have 
insulation installed but are retrofitted with a new roof, and buildings that are built with more roof insulation than is 
required by NCC2016. 

Both shopping centres and airports can have widely varying fractions of glazing in their external walls and roofs; airports, 
in particular, can have extensive glazing (Geng, Yu, Lin, Wang, & Huang, 2017; Lau, Dally, & Arjomandi, 2011; Parker, 
Cropper, & Shao, 2011).  Values were chosen for the two case-study buildings that were considered typical of each 
building type, to give an indication of the type of performance that could be expected of such buildings, but they are 
unlikely to represent all shopping centres and airports accurately.   

The percentage of glazed wall area was set to 5% for the shopping centre and 25% for the airport, and roof glazing was 
not included in either model.  Additional glazing on conditioned spaces, above the values adopted here, would tend to 
increase the benefits of cool roofs, since the increased solar heat gains would tend to increase cooling demand and 
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decrease heating demand.  The converse is also true: buildings with less glazing on conditioned spaces would tend to 
benefit less from cool roofs. 

Very few previous studies were found that had quantified air infiltration rates for shopping centres or airports.  Jenkins 
(2008) noted that infiltration rates for shopping centres could be expected to vary significantly over time and between 
different buildings; the author suggested values from 0.5 to 1.0 air changes per hour (ACH) at natural pressure.  A value 
of 0.7 was set for both case-study buildings in the present investigation. 

5.4.3 Building Operation 

The authors were not aware of any official regulation on which the building internal temperature set-points could be 
based.  AIRAH (2015) indicated that the current practice for shopping centres was to maintain the indoor temperatures at 
approximately 22.0–22.5°C during the entire year, so this range was set for both case-study buildings. 

The majority of internal heat load magnitudes and schedules were defined as per NCC2016 (see Table 5.4).  Values for 
Class 6 and Class 9b buildings were applied to the shopping centre and airport, respectively.  Values that were not 
available in NCC2016 were taken from other publications: the maximum occupant densities were based on publications 
by Morris et al. (2010) and Energy Action (2018) for the shopping centre and airport respectively, and the airport 
schedules were taken from the BPS software library (EnergyPlus 2010).  The equipment load for the shopping centre 
was set to 10W/m2, which is larger than the NCC2016 value of 5W/m2, to account for loads that are common in shopping 
centres but not within the typical retail shop, e.g. vending machines, cooking equipment in food courts and any 
refrigeration in supermarkets that is not conditioned by rooftop units. 

Table 5.4:  Internal loads and schedules applied to the two case-study buildings. 

Parameter Shopping Centre Airport 

Lighting load [W/m2] 22 10 

Equipment load [W/m2] 10 5 

Maximum (inverse) occupant 
density [m2/person] 

3 1.7 

Occupant thermal load 
[W/person] 

75 sensible, 55 latent 75 sensible, 55 latent 

Lighting schedule 100% from 7:00 and 19:00, 10% otherwise 100% at all times 

Equipment schedule 70% from 7:00 and 19:00, 10% otherwise 100% at all times 

Occupancy schedule 
Varies, maximum of 25% reached during 

11:00–13:00 

Varies, maximum of 100% during 9:00–12:00 
and 14:00–17:00, minimum of 25% reached 

from 18:00 to 8:00 

HVAC schedule On between 7:00 and 18:00 Always on 

 

5.4.4 HVAC Systems 

Detailed variable-air-volume HVAC systems were modelled for the buildings (see Figure 5.4).  The system designs were 
based on ASHRAE Standard 90.1-2010 Appendix G (ASHRAE 2010).  They were comprised of: four chillers, four gas 
boilers, four ‘parallel fan-powered box’ air handling units per floor, and reheat coils in the air delivery ducts.  Two different 
systems were compared in simulations of both buildings, one with air-cooled chillers; the other with two wet cooling 
towers per chiller. 
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Figure 5.4:  Schematic diagram of an example of a variable-air-volume HVAC system modelled in BPS.  Eight such systems were 
included in each simulation, one for each conditioned indoor space.  Additional simulations were run with the same HVAC systems, 
except that the chillers were air-cooled (i.e. the water circuits, coloured green, and the wet cooling towers were not included). 

5.5 Results and Discussion 

In total, 1344 building performance simulations were run.  Selected results have been presented here, to assist in the 
explanation of key research outcomes. 

5.5.1 Thermal Demand 

Total annual heating and cooling requirements for the shopping centre and airport are presented in Figure 5.5 and Figure 
5.6, respectively. The heating/cooling ratio varied significantly between climate zones, and to a lesser degree between 
the two buildings; it ranged from 0.0 (airport in climate zone 1) to 2.81 (shopping centre in climate zone 7). 
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Figure 5.5:  Thermal demand met by HVAC systems in the shopping centre case-study building, with each of the four roof materials: 
bare metal (M), dark-coloured (D), light-coloured (L), and very light-coloured (C); in climate zones 1–7.  Results presented here include 
the effects of above-roof air temperatures.  

 

 

Figure 5.6:  Airport case-study building thermal demand met by HVAC systems, with each of the four roof materials: bare metal (M), 
dark-coloured (D), light-coloured (L), and very light-coloured (C); in climate zones 1–7.  Results presented here include the effects of 
above-roof air temperatures. 

The use of different roof materials resulted slightly different predicted heating and cooling loads.  The very light-coloured 
roof produced lower cooling loads, and equal or higher heating loads than the other roof materials in all cases.  
Compared to the bare metal roof and depending on the climate zone, the very light-coloured roof reduced the cooling 
demand by between 4.0% to 9.1% in the shopping centre case and between 1.9% to 6.4% in the airport case, and 
increased the heating demand by between 9.3% and 18.2% in the shopping centre case and 2.3% and 10.3% in the 
airport case.   
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These values represent the effects of cool roofs on heat transmission through the roof structure, combined with the 
effects of above-roof air temperatures on the thermal load associated with ventilation air flows. Electricity savings and 
gas penalties were predicted for the purpose of comparing the very light-coloured roof to the bare metal roof; the relative 
proportions of savings and penalties varied widely with building type and climate zone.   

The study found that on average conventional building simulation practices, that do not account for above-roof 
temperature effects, would have under-estimated the cooling energy benefits of cool roofs by a factor of approximately 2 
in the cases that were investigated.  

Cold weather gas penalties were also predicted to be under-estimated without the inclusion of the above-roof 
temperature field in building performance simulations. However, further work is needed to verify the calibration of the 
above-roof temperature model of this study to cover cold climate/winter conditions, to ensure that the predicted 
percentage values of gas penalties reported here are representative of colder climates with significant building heating 
requirements. 

5.5.2 Electricity and Gas Consumption 

The annual electricity and gas consumption of the buildings (see Figure 5.7 and Figure 5.8) were closely correlated with 
the corresponding annual cooling and heating demands.  The airport consumed more than double the electricity and gas 

than the shopping centre in all cases, and the ratio of gas consumption to electricity consumption was at least 
qualitatively similar to the ratio of heating to cooling demand in each case.  The HVAC systems including wet cooling 

towers consumed less electricity than those with air-cooled chillers in all cases, by a margin that ranged from 2% to 23% 
of the total annual electricity consumption.

 

Figure 5.7:  Shopping centre case-study building annual HVAC energy consumption, with each of the four roof materials: bare metal 
(M), dark-coloured (D), light-coloured (L), and very light-covered (C); in climate zones 1–7.  Results are presented for HVAC systems 
with air-cooled chillers (top) and wet cooling towers (bottom).  Results presented here include the effects of above-roof air temperatures, 
however, the predicted impact of the cool roof on heating energy consumption in colder climates should be viewed with caution, since 
the above-roof temperature empirical model has not yet been validated for cold climates. 
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The large differences between the energy consumption of the airport and shopping centre case-study buildings highlights 
the sensitivity of the BPS results to the design of any the building under consideration, and to the assumptions regarding, 
occupancy, internal loads, etc.  The two case-study buildings here were identical in size, geometry, orientation, 
construction materials, location and HVAC systems, in each case.  However, differences in the internal loads, usage 
schedules and glazing ratio applied to each building produced annual energy consumption predictions that were 
significantly different in magnitude, and in the relative magnitudes of electricity vs. gas consumption.   

It is therefore important to note that given the strong sensitivity to design and occupancy inputs and the large variations 
that are likely to exist in the Australian building stock, the results presented in this report should be treated as indicative 
of the likely performance of the two case-study buildings, but the results cannot be applied to all Australian large-footprint 
buildings.  

 

Figure 5.8:  Airport case-study building annual HVAC energy consumption, with each of the four roof materials: bare metal (M), dark-
coloured (D), light-coloured (L), and very light-coloured (C); in climate zones 1–7.  Results are presented for HVAC systems with air-
cooled chillers (top) and wet cooling towers (bottom).  Results presented here include the effects of above-roof air temperatures, 
however, the predicted impact of the cool roof on heating energy consumption in colder climates should be viewed with caution, since 
the above-roof temperature empirical model has not yet been validated for cold climates. 

The cool roof reduced the HVAC electricity consumption and increased the HVAC gas consumption, compared to the 
bare metal roof in, all cases (see Figure 5.9 and Figure 5.10).  Due to the higher ratio of heating demand to cooling 
demand of the shopping centre, compared to the airport, the magnitude of gas ‘penalties’ relative to the cooling ‘benefits’ 
was significantly higher for the shopping centre. 

Above-roof air temperature effects increased the electricity savings predicted to come from the provision of the cool roof, 
but they were also predicted to lead to increased gas consumption, as expected.  
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Figure 5.9:  Effect of the cool roof, as compared to the bare metal roof, on the annual HVAC energy consumption of the 
shopping centre case-study building in climate zones 1–7.  Results are presented for HVAC systems with air-cooled 
chillers (top) and wet cooling towers (bottom). Note: the predicted impact of the cool roof on heating energy consumption in colder 

climates should be viewed with caution, since the above-roof temperature empirical model has not yet been validated for cold climates. 

 

Figure 5.10:  Effect of the cool roof, as compared to the bare metal roof, on the annual HVAC energy consumption of the airport case-
study building in climate zones 1–7.  Results are presented for HVAC systems with air-cooled chillers (top) and wet cooling towers 
(bottom). Note: the predicted impact of the cool roof on heating energy consumption in colder climates should be viewed with caution, 
since the above-roof temperature empirical model has not yet been validated for cold climates. 
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5.6 Conclusion 

Building Performance Simulations were conducted for two case-study large-footprint buildings, in seven Australian 
climate zones, with four different roof materials, and two different HVAC systems.  The case-study buildings were 
designed to be simplified representations of an airport and a shopping centre.  Simulations were conducted with and 
without the above-roof temperature model that was developed in Section 3 of this report.  The simulation results were 
analysed to determine: i) the building thermal demands and energy consumptions; ii) the performance of a cool roof, 
relative to a bare metal roof; and iii) the importance of above-roof air temperatures in the performance of cool roofs. 

The annual building thermal demands varied significantly between climate zones and between the two buildings.  The 
airport required more than twice the thermal energy, and tended to require proportionally more cooling, than the 
shopping centre did.  The heating/cooling ratio varied from 0.0 (airport in climate zone 1) to 2.81 (shopping centre in 
climate zone 7).  Annual electricity and gas consumptions were closely aligned with the cooling and heating demands in 
each case. 

Cool roofs were observed to reduce annual electricity consumption and increase annual gas consumption in all cases, by 
an average of 4.0% and 8.4%, respectively.  The higher heating/cooling ratio of the shopping centre caused the 
magnitude of electricity savings relative to the magnitude of gas increases, attributable to the cool roof, to be smaller for 
that building. 

The relative influence of above-roof air temperature effects on the benefits and ‘penalties’ of the cool roofs varied 
significantly between the different cases, but the effects of the cool roof were consistently increased by such above-roof 
effects.  Conventional building simulation practices would have underestimated the effects of cool roofs by a factor of 
approximately 2 in the cases that were investigated in the present project.   

Our results support the assertions of previous researchers who have suggested that the effects of cool roofs on near-roof 
air temperatures, and the consequential effects of these temperatures on the performance of rooftop HVAC equipment, 
need to be taken into account for accurate predictions of cool roof performance relative to ‘non-cool’ roofs. 

However, it is important to note that as a result of the time and human resource constraints of this project, it was 
necessary to limit the number of buildings typologies, and the range of design and occupancy details simulated. Thus, 
many assumptions were made in the Building Performance Simulations that were conducted in the present work, and the 
scope of the simulation study was relatively small.  

Nevertheless, large variations in the simulated energy performance of the nominally similar case-study buildings were 
observed, demonstrating the sensitivity of such simulations to various input parameters (e.g. internal loads and usage 
schedules).  Furthermore, the simulations were conducted with only a limited set of radiative-optical properties, 
representing some common roof types. However, roof properties are known to vary significantly over time.  Therefore, 
the results of the present study should be treated as indicative values, representing two example buildings with specific 
roof properties at a point in time.   

Variations in the Australian building stock are likely to cause many real airports and shopping centres to perform 
differently to the buildings investigated here due to the sensitivity of the impact of roof surface properties on energy 
consumption in the building to the detailed design and operation of the building.   

Despite the sensitivities and limitations noted above, the effects of cool roofs and the relative importance of above-roof 
temperature effects have been demonstrated to be very significant for the large-footprint building types studied. 
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6 Economic Analysis 

An analysis of the financial benefits of cool roofs in terms of reduced operating costs was conducted, for the airport and 
shopping centre case-studies, in various Australian climates.  By quantifying the change in running costs, and the 
abatement of greenhouse gas emissions, attributable to the selection of one roof material over another, it was possible to 
determine the net effect of electricity savings and gas consumption ‘penalties’ as a function of a range of electricity and 
gas prices.  However, economic benefits of cool roofs associated with potential reduction in HVAC equipment size (e.g. 
Adams et al. 2013) have not been considered in the present study. 

6.1 Operational Costs 

Differences in HVAC electricity and gas consumption, between buildings with different roof materials, would lead to 
different running costs for the buildings.  Due to the significant variations in electricity and gas costs across different 
Australian jurisdictions, and the high probability that such costs will change significantly over time, a range of energy 
costs were included in the cost-benefit analysis.   

In reality, electricity and gas pricing structures are often complex. Unit prices can vary according to time of use, and other 
tariffs associated with the customer peak demand may also come into play. The scope of the current project did not 
permit time for a comprehensive analysis of the impact of pricing structures on the value proposition for cool roofs. Thus, 
the analysis presented here was based on single unit costs for both gas and electricity, which provided an indicative 
range of results for the buildings investigated. To fully explore the value proposition for cool roofs accurately the hourly 
results of the Building Performance Simulations would need to be matched to the energy supply contracts in place for a 
particular building. 

The ratio of electricity price to gas price (both expressed as per $/kWh of energy delivered by the utility), 𝛼, is clearly an 

important parameter given that gas is often used for heating of buildings in Australian heating-dominated climates, 
whereas electricity is used almost exclusively to drive cooling systems. So as to make our cost benefit analysis relevant 
to any jurisdiction we have presented our results in terms of graphs with electricity unit price, and the ratio 𝛼, as the 

independent variables. Note: that since 𝛼 is the ratio of energy cost per $/kWh of energy delivered by the utility to the site 

it does not take account of the efficiencies/COPs of equipment (air conditioning systems/boilers) converting this energy 
to thermal services; e.g. electrical energy driving a typical high performance heat pump will results in more heat being 
delivered to a building than the same amount of energy in gas driving a typical boiler. 

Results from a selection of cases investigated are presented below to illustrate key findings from the analysis. 

Figure 6.1 shows the estimated reduction in annual running costs if a cool roof were installed instead of a bare metal roof 
for the two case-study buildings in climate zone 1; both with air-cooled chillers.  The electricity-to-gas cost ratio 𝛼 had 

virtually no effect on running cost estimates in climate zone 1 because of the absence of heating demand of buildings in 
that climate.  Running cost savings for the airport were approximately double those for the shopping centre, due mainly 
to its larger internal loads and glazing driving cooling demand.  The above-roof temperature model increased the 
magnitude of estimated savings significantly for both buildings. 
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Figure 6.1:  Annual running cost savings attributable to the very light-coloured roof, compared to the bare metal roof, in climate zone 1.  
Results are presented for the shopping centre (top) and airport (bottom) case-study buildings, both with air-cooled chillers.  The left-
hand plots show results obtained using a conventional modelling approach (i.e. without taking above-roof air temperatures into account); 
the right-hand plots show results obtained using the above-roof temperature model.  The parameter 𝛼 represents the ratio of electricity 

price to gas price (both per kWh). 

In climate zone 5 a significant amount of heating was required, so the ratio of energy unit prices, 𝛼, affected running 

costs significantly (see Figure 6.2).  This was especially true for the shopping centre, which required a greater proportion 
of heating (compared to cooling) than the airport due mainly to its lower internal loads and lower glazing fraction.  As in 
climate zone 1, the cool roofs reduced running costs by a greater amount in the case of the airport due to the higher total 
running costs of that building, and accounting for the above-roof temperature effects significantly increased the effects of 
cool roofs for both buildings.  For the shopping centre in climate zone 5, if 𝛼 = 1 (i.e. if electricity and gas prices were 

equal on a kWh basis) and above-roof temperature effects were taken into account, a net increase in HVAC running 
costs was predicted. 
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Figure 6.2:  Annual running cost savings attributable to the very light-coloured roof, compared to the bare metal roof, in climate zone 5.  
Results are presented for the shopping centre (top) and airport (bottom) case-study buildings, both with air-cooled chillers.  The left-
hand plots show results obtained using a conventional modelling approach (i.e. without taking above-roof air temperatures into account); 
the right-hand plots show results obtained using the above-roof temperature model.  The parameter 𝛼 represents the ratio of electricity 

price to gas price (both per kWh).  

In climate zone 6, the effect of cool roofs on HVAC running costs was even more sensitive to the ratio of electricity unit 
price to gas unit price (𝛼).  A net reduction in running costs was predicted for the airport for all values of 𝛼 investigated, 

but a net increase was predicted for the shopping centre when gas prices were one quarter the electricity price or higher 
(see Figure 6.3).  Above-roof temperature effects significantly increased the magnitude of the estimated difference in 
running cost in climate zone 6, as it did in the other climate zones. 

These results further demonstrate two key observations made in the BPS study (see Section 5): 1) the effects of a cool 
roof are strongly sensitive to details of the building construction and usage (this is evident in the significant differences 
between the airport and shopping centre cases); and 2) the effects of cool roofs can be underestimated by an amount on 
the order of 50% by conventional BPS practices (in which the effects of near-roof air temperatures on rooftop HVAC 
equipment are neglected). 
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Figure 6.3:  Annual running cost savings attributable to the very light-coloured roof, compared to the bare metal roof, in climate zone 6.  
Results are presented for the shopping centre (top) and airport (bottom) case-study buildings, both with air-cooled chillers.  The left-
hand plots show results obtained using a conventional modelling approach (i.e. without taking above-roof air temperatures into account); 
the right-hand plots show results obtained using the above-roof temperature model.  The parameter 𝛼 represents the ratio of electricity 

price to gas price (both per kWh). 

6.2 Greenhouse Gas Emissions Abatement 

The abatement of greenhouse gas emissions was estimated using emission factors from the Australian Government July 
2017 National Greenhouse Accounts Factors report (Australian Government Department of the Environment and Energy 
2017).  As was the case for electricity and gas unit prices, the analysis was strongly sensitive to the emissions factors 
chosen, and significant variations in emissions factors existed within Australia.  For these reasons, the analysis was 
conducted for a range of electricity emissions factors, with the emissions factor for natural gas fixed at the national 
average specified in the National Greenhouse Accounts Factors report.  The Scope 1 emissions (i.e. on-site emissions), 
Scope 2 emissions (i.e. off-site direct emissions, e.g. burning fossil fuels to produce electricity), and Scope 3 emissions 
(i.e. off-site indirect emissions, e.g. from the extraction and transport of fossil fuels) were combined (see Table 6.1). 

 

Table 6.1:  Emissions factors for consumption of natural gas in Australia (Australian Government Department of the Environment and 
Energy 2017). 

 Scope 1 Scope 2 Scope 3 Total 

Natural gas [kg CO2-e kW-1 h-1] 0.1855 N.A. 0.0285 0.214 
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Figure 6.4 presents the estimated greenhouse gas emissions abatement attributable to cool roofs, for both buildings, 
with air-cooled chillers, in all seven climate zones.  The cool roof was predicted to reduce net greenhouse gas emissions 
in the airport case for all but extremely low electricity emissions factors (<18 g CO2/kWh).  Results for the shopping 
centre were more varied.  In climate zone 7 the cool roof was predicted to cause a net increase in greenhouse gas 
emissions, while in climate zones 4 and 6, both increases and decreases in emissions were predicted within the range of 
electricity emissions factors considered.  Above-roof temperature effects consistently increased the magnitude of 
predicted emissions reductions/increases, which further demonstrated the importance of such effects in the function of 
cool roofs. 

 

Figure 6.4:  Estimated annual greenhouse gas emissions abatement in all seven climate zones (CZ).  Results are presented for the 
shopping centre (top) and airport (bottom) case-study buildings, both with air-cooled chillers.  The left-hand plots show results obtained 
using a conventional modelling approach (i.e. without taking above-roof air temperatures into account); the right-hand plots show results 
obtained using the above-roof temperature model. 

6.3 Conclusion 

An operational cost analysis was conducted, to determine the net effect of electricity savings and gas 
‘penalties’ estimated for cool roofs in the BPS study.  The net effect of the very light-coloured roof, compared 
to the bare metal roof, on HVAC running costs was estimated for a range of gas and electricity unit prices.  In 
a similar manner, the greenhouse gas emissions abatement attributable to cool roofs was estimated for a 
range of electricity emissions factors. 

Given the strong sensitivity of BPS to modelling assumptions (e.g. internal loads and usage schedules) and 
the wide variations in such variables across the Australian building stock, results determined for the two-case 
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study buildings should not be taken as being directly applicable to all shopping centres and airports.  In 
addition, roof radiative-optical properties are known to change over time, but such ‘ageing’ was not taken into 
account in the present analysis.   

Nevertheless, the net changes in HVAC running costs and greenhouse gas emissions abatement estimated 
here do give indicative values for large-footprint buildings in seven Australian climate zones.  Modelling 
assumptions made in the present work were almost entirely based on recommendations made in industry 
standards, so the results that were produced were representative of real buildings.  Moreover, the results of 
the present analysis clearly demonstrate the importance of taking above-roof temperature effects into 
account when evaluating the performance of roofs. 
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7 Note on Project Deliverables 

The original set of proposed outputs from this project included a broad and ambitious scope to both investigate current 
gaps and extend existing knowledge. These outputs were originally to include pilot design, testing with key stakeholders 
and eventual public release of large-footprint building cool roof cost-benefit calculator resources. 

However, due to the limited human resources available to the project it was determined in conjunction with the primary 
industry partner that the development of a cost-benefit calculator would not be pursued as it was seen as requiring 
significantly more time and resources than were available.  

However, as detailed in this report, the project has both confirmed the presence of a modified local climate above large 
format roofing and validated an empirical model that may be used to replace the need for CFD to characterise that local 
climate for incorporation into energy modelling.   

The empirical model is in the form of a correlation (comprising equations 3.1 to 3.4) to estimate the thermal stratification 
above a give large roof for a specific set of independent parameters, namely: mean roof surface temperature, roof 
characteristic length, and local ambient/freestream temperature and wind speed. 
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Appendix A: Above-Roof Temperature Estimation Procedure 

The simple empirical model developed in the present work, for estimation of above-roof air temperatures, can be applied 
in building performance simulations (or similar), by the following procedure.  

First, calculate the Richardson number: 

𝑅𝑖 =
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿

�̅�𝑟𝑒𝑓
2  

where: 

𝑔 ≈ 9 81 m/s2 is the acceleration due to gravity; 

𝛽 ≈ 1 𝑇∞⁄  is the thermal expansion coefficient of the fluid; 

𝑇𝑠 is the mean roof surface temperature [K]; 

𝑇∞ is the ambient air temperature [K]; 

𝐿 = √𝐴 is the characteristic length scale of the flow; 

𝐴 is the roof area in [m2]; and 

 �̅�𝑟𝑒𝑓 is the mean reference wind speed [m/s]. 

 

The parameter 𝛼 can then be calculated, as follows: 

𝛼 =

{
 
 

 
 
10−4                                                                                                     𝑅𝑖 < −10  6     
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Using 𝛼, the temperature at any height above the roof surface (𝑧) can be estimated: 

𝑇(𝑧) = 𝑇𝑠 − (𝑇𝑠 − 𝑇∞)
ln (

𝑧+𝛼

𝛼
)

ln (
 +𝛼

𝛼
)
 

and, if it is assumed that HVAC equipment draws air evenly from the range of heights that its inlet duct spans, the mean 
HVAC inlet temperature can be estimated as: 

𝑇    =
1

𝑧2 − 𝑧 
∫ (𝑇𝑠 − (𝑇𝑠 − 𝑇∞)

ln (
𝑧+𝛼

𝛼
)

ln (
 +𝛼

𝛼
)
)𝑑𝑧

𝑧2

𝑧1

 

Or, in an integrated form: 

             𝑇    = 𝑇𝑠 −
(𝑇𝑠 − 𝑇∞)

(𝑧2 − 𝑧 ) ln (
 +𝛼

𝛼
)
[(𝑧2 + 𝛼) ln (

𝑧2 + 𝛼

𝛼
) − 𝑧2 + 𝑧 − (𝑧 + 𝛼) ln (

𝑧 + 𝛼

𝛼
)] 

where 𝑧  and 𝑧2 are, respectively, the height of the bottom and top of the HVAC inlet duct from the roof, in metres.  In the 

present study, the values 𝑧 = 0 5m and 𝑧2 = 2m were used. 

 
It should be noted that although the correlation between above-roof temperature and Richardson number above is 
general in nature, it should be applied with caution to cases/situations with significantly different weather conditions to 
those studied experimentally in the present project, or to buildings of a significantly different scale, or design. For 
example, it is quite possible that different/additional building physics phenomena may come into play regarding night-
time above-roof temperatures in colder climates, since condensation and frost on the roof surface may impact thermal 
stratification. 
 
It is hoped that additional funding may be sourced in the future to carry out further experimental work under cold climate 
conditions.  



 

RP1037 Final Report  91 

 

Appendix B: Building Operation Schedules for BPS 

Occupancy, lighting, equipment and HVAC schedules were set according to ‘Class 6’ buildings in NCC2016, as follows: 

Time Period Occupancy Artificial Lighting 
Appliances and 

Equipment 
HVAC 

12:00am to 1:00am 0% 10% 10% Off 

1:00am to 2:00am 0% 10% 10% Off 

2:00am to 3:00am 0% 10% 10% Off 

3:00am to 4:00am 0% 10% 10% Off 

4:00am to 5:00am 0% 10% 10% Off 

5:00am to 6:00am 0% 10% 10% Off 

6:00am to 7:00am 0% 10% 10% Off 

7:00am to 8:00am 10% 100% 70% On 

8:00am to 9:00am 20% 100% 70% On 

9:00am to 10:00 am 20% 100% 70% On 

10:00am to 11:00 am 15% 100% 70% On 

11:00am to 12:00 am 25% 100% 70% On 

12:00pm to 1:00 pm 25% 100% 70% On 

1:00pm to 2:00 pm 15% 100% 70% On 

2:00 pm to 3:00 pm 15% 100% 70% On 

3:00 pm to 4:00 pm 15% 100% 70% On 

4:00 pm to 5:00 pm 15% 100% 70% On 

5:00 pm to 6:00 pm 5% 100% 70% On 

6:00pm to 7:00pm 5% 100% 70% Off 

7:00pm to 8:00pm 0% 10% 10% Off 

8:00pm to 9:00pm 0% 10% 10% Off 

9:00pm to 10:00pm 0% 10% 10% Off 

10:00pm to 11:00pm 0% 10% 10% Off 

10:00pm to 11:00pm 0% 10% 10% Off 
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The airport occupancy, lighting, equipment and HVAC schedules were set according to the EnergyPlus occupancy, 
lighting and equipment library for airport terminals, as follows: 

Time Period Occupancy Artificial Lighting 
Appliances and 

Equipment 
HVAC 

12:00am to 1:00am 25% 100% 100% On 

1:00am to 2:00am 25% 100% 100% On 

2:00am to 3:00am 25% 100% 100% On 

3:00am to 4:00am 25% 100% 100% On 

4:00am to 5:00am 25% 100% 100% On 

5:00am to 6:00am 25% 100% 100% On 

6:00am to 7:00am 25% 100% 100% On 

7:00am to 8:00am 25% 100% 100% On 

8:00am to 9:00am 50% 100% 100% On 

9:00am to 10:00 am 100% 100% 100% On 

10:00am to 11:00 am 100% 100% 100% On 

11:00am to 12:00 am 100% 100% 100% On 

12:00pm to 1:00 pm 75% 100% 100% On 

1:00pm to 2:00 pm 75% 100% 100% On 

2:00 pm to 3:00 pm 100% 100% 100% On 

3:00 pm to 4:00 pm 100% 100% 100% On 

4:00 pm to 5:00 pm 100% 100% 100% On 

5:00 pm to 6:00 pm 50% 100% 100% On 

6:00pm to 7:00pm 25% 100% 100% On 

7:00pm to 8:00pm 25% 100% 100% On 

8:00pm to 9:00pm 25% 100% 100% On 

9:00pm to 10:00pm 25% 100% 100% On 

10:00pm to 11:00pm 25% 100% 100% On 

10:00pm to 11:00pm 25% 100% 100% On 

 

 


