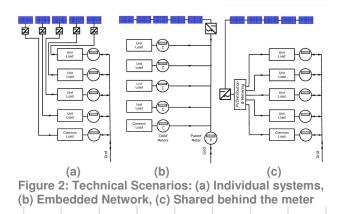
SOLAR APARTMENTS

How can the 2.3 million Australians who live in apartments share the benefits of solar energy?

Research Questions

- RQ1 How big is the opportunity for solar photovoltaics (PV) on apartment buildings?
- RQ2 What is the value for households, electricity distribution networks, society and the environment?
- RQ3 How can different technical and financial arrangements ensure equitable distribution of costs, risks and benefits?
- RQ4 What regulatory changes are needed to make this happen?

Methodology


The project addresses:

RQ1 using 3D building models and aerial images of urban centres (Fig 1);

Figure 1: Rooftop opportunity assessment

RQ2 through **technical and economic** modelling of solar generation to supply apartments and common property electricity loads (Fig 2);

RQ3 by modelling the distribution of costs and benefits under a range of technical and financial arrangements (Fig 3), and through case studies to better understand risks:

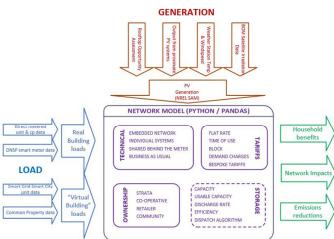


Figure 3: Schematic of Python model

RQ4 via case studies and stakeholder interviews and analysis of regulatory arrangements.

Initial Results

Some highlights:

1 For many low-rise (61% of apartments), potential rooftop generation exceeds common property loads (Fig 4).

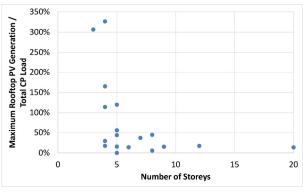


Figure 4: Ratio of potential generation to common property load

2 Embedded networks and load diversity increase self-consumption by up to 33% (Fig 5).

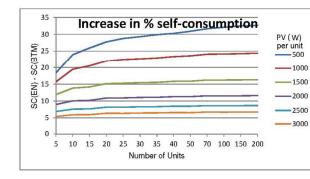


Figure 5: Increased self-consumption in embedded network (EN) compared to behind the meter (BTM)

3 Financial outcomes of embedded networks are highly sensitive to retail tariffs and to building-specific capital costs. In the right circumstances, PV improves viability (Fig 6).

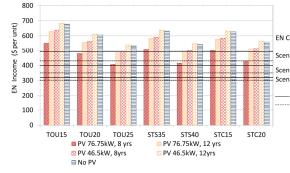


Figure 6: Outcomes for Embedded Network Operators with Time of Use and Solar tariffs under different EN cost scenarios and amortization periods for a 44 unit NSW building

4 Shared use of distributed energy resources and co-ordinated engagement in the energy market are held back by current and proposed retail and embedded network regulation.

Anticipated impacts

consumers.

Energy Consumers Australia

With thanks to

Climate Media Centre, Enova Energy, City of Stonnington, Lendlease.

Dr Anna Bruce. Associate Professor Jain MacGill

Contact

Mike Roberts SPREE / CEEM, UNSW m.roberts@student.unsw.edu.au

Energy

Consumers Australia LOW CARBON LIVING

NP4011

Apartment residents should not be left behind in the transition to a distributed renewable energy system.

This research will provide a body of evidence to support policy development to enable wider deployment of renewable energy on apartment buildings. Outcomes and recommendations will be shared widely with project partners as a basis for advocacy and to provide guidance and information to

Project Partners

Supervisors