NP1002 SIMULATION OF ROOFTOP PHOTOVOLTAIC SHADING OF AN ADELAIDIAN HOUSE

• Considering the collector obstruction, a model has

ground-reflected solar radiation reaching the roof

• The model tracks the Sun position when calculating

the collector shadow falling on the roof

been developed to calculate beam, sky-diffuse and

Methodology

Research background

- One in four South Australian houses has a smallscale rooftop PV
- Rooftop PV blocks beam, sky-diffuse, and groundreflected solar radiation from reaching the roof surface

Shading problem

Transient System Simulation software (TRNSYS) does not consider the shading effect on opaque surfaces when calculating the energy used for space heating and cooling.

Sky dome **View lines** towards the sky PV Collector Horizon line View lines towards the ground Roof

the roof (see figure)

Results

Monthly Average Reduction of Indoor Temperature

Conclusions & anticipated impacts

- indoor thermal comfort

Further information

This research is part of the Adelaide Research Node for Low Carbon Living. Additional information can be found on the CRC website: http://www.lowcarbonlivingcrc.com.au

Contact

Sleiman Farah (sleiman.farah@mymail.unisa.edu.au)

University of South Australia

tweet this student poster #CRCLCL2017

• Sky and ground view factors are calculated numerically as part A of the collector blocks both the sky view for part B and the ground view for part C of

• Lower indoor temperature throughout the year

Overall increase of energy usage for maintaining

LOW CARBON LIVING

CRC CRC