URBAN MICROCLIMATES: RETROFITTING AUSTRALIAN PRECINCTS FOR HEATWAVE RESILIENCE

PHD RESEARCH

PhD Candidate: Gertrud Hatvani-Kovacs

25 Augustus 2014

Principal Supervisor: Professor John Boland

Co-Supervisor: Dr Conrad Philipp

Started the PhD candidature: 02 September 2013

Zero Waste SA Research Centre for Sustainable Design UniSA and Behaviour

The project CRC LCL project on Urban micro climates : Comparative study of major contributors to the UHI effect in three Australian cities: Sydney, Melbourne, Adelaide

The increased GHG emissions will potentially raise the overall temperature in Australian cities by up to 1.2°C by 2030, up to 2.2°C by 2050 and up to 3.4°C or more by 2070 (<u>CSIRO 2007a, p.124</u>; <u>2007b</u>).

The risk of climatic extremes is growing (Frich et al. 2002, 209).

The frequency and intensity of heatwaves in Australia and globally are rising (Alexander et al. 2007, 17; Nairn and Fawcett 2013, 29).

The urban heat island (UHI) is the discernible temperature difference between urban and rural areas, peaking at late evening and night caused by the excess urbanisation (<u>Gartland</u> <u>2008, 2</u>).

In particular, Australia is exposed to urban heatwaves due to its high-degree of urbanisation; in 2011, 89 per cent of Australians lived in cities (<u>UN DESA 2011, Appendix File 1</u>).

The problem Urban heatwaves (UHWs): The combined impact of urban heat island and heatwaves.

ROOT CAUSE	S ELEMENTS	I	DIRECT CONSEQUENCES >>>>>	>>>>>INDIRECT	CONSEQUENCES
materials (urban and building)	low solar reflectivity	temperature	higher urban surface temperature	increased growing season	endangered ecosystem endangered utilities, facilities: shorter lifespan, increased waste production, higher maintenance costs, increased waste energy, increased carbon emission endangered human health and social life
	low thermal emissivity		higher urban air temperature	increased air pollution	
	high thermal capacity		thermal inversion	water pollution	
urban land use	high development density	air	altered local wind	increased water temperature	
	increased impermeable surface	water	increased stormwater runoff	sewage peak demand	
	low green area ratio		higher air temperature due to the decreased air humidity	increased electricity demand	
	decreased evapotranspiration	energy, facilities, utilities	increased water demand	mains water peak demand	
urban	high building/street h/w ratio		increased cooling demand	deaths and severe health problems	
morphology			increased lighting demand	decreased activity	
anthropogenic heat	direct increased energy demand		difficulties with the transport network	increased reportorial illnesses	
	indirect increased energy demand	human	health	decreased usage of public space	
			discomfort	increased aggression	
IMPAC	TS ON SOCIETY	IMPACT	S ON URBAN MICROCLIMATE	IMPACTS ON UN	RBAN SYSTEMS

The causes and consequences of Urban Heatwaves

Mainly psychologists, public health scientists and climatologists have investigated so far the population vulnerability to heatwaves, focusing on the impacts of socioeconomic factors on mortality and morbidity rates.

Neither the findings for **socioeconomic vulnerability** nor real-world **thermal perception** have been integrated in the evaluation of mitigation techniques. UHI literature exists on city, building, public space or canyonscales. **Precinct analysis** provides the opportunity to examine the relationship between indoor and outdoor spaces within UHIs.

UHI research concentrates on city centres and neglects **suburban** areas.

Existing building stock is a major burden on sustainable development. Therefore, **retrofitting** has to be explored in association with UHW mitigation. The characteristics of the **daytime and the night-time UHIs** and their impacts on the citizens are divergent. Therefore, precinct function conscious mitigation is essential.

Studies mostly focus on one particular city and miss the opportunity of UHI comparison in **various climates**.

RQ1. What are the most economically and socially feasible mitigation techniques for retrofitting the existing building stock in Australian context in order to increase its resilience against heatwaves?

RO2. What are the social and economic factors of the inhabitants that influence precincts' resilience to heatwaves?

RQ3. How and to what extent could heat resilient retrofitting techniques contribute to the decrease of energy consumption and the reduction of greenhouse gas emissions in Australian cities?

Zero Waste SA Research Centre for Sustainable Design A and Behaviour

How can we measure the intensity of heatwaves?

$$EHF = EHI_{sig} \times \max(1, EHI_{accl}).$$

Adopted from (Nairn & Fawcett 2013)

- uses daily mean temperature, not just daily maximum
- Excess heat factor (EHF) compares three days daily mean temperature (DMT) with the climate specific temperature (recent 30 days and 30 years).
- enables the comparability of HWs in different climates.
- clear correlation is proved between mortality and EHF

Vulnerability mapping

- weighted vulnerability index is calculated
- comprehensive research about the Australian capitals
- EHF could not be used
- different **mortality** data were used for each city because of the limited data availability
- only one BOM station is used for each city
- population is calculated based on residential address

Adopted from (Loughnan & Tapper 2013)

Essence of the literature review

at daylight

Case study locations

Zero Waste SA Research Centre fo Sustainable Design A and Behaviour

Case study research method:

- explanatory case study
- low level of controllability
- focus on contemporary events
- complexity of real life

Each case study is a natural experiment:

- statistical control is applied
- longitudinal design is accommodated

Survey :

- To explore heatwave perception
- To explore the acceptability of different retrofitting techniques

Case study research

- Data availability
 - Suburb is the smallest scale where morbidity data is available
 - ABS data availability (suburb or statistical area 1 or 2)
- Uniform building functions
- Geographic location, closeness of water body
- Suburbs with different social classes
- Vulnerable areas based on literature review
- Proximity of weather stations
- Water data availability (smart meter trials)
- Energy data availability (smart meter trials and geographically isolated areas with identifiable transformers)

Case study selection criteria

Zero Waste SA Research Centre for Sustainable Design hiSA and Behaviour

Impact indicators of UHWs

- Discover the correlation between EHF and the impact indicators
- Calculate precinct specific resilience

$$\left[|\Delta \mathsf{M}:\Delta EHF|: \frac{M}{Mo} \right] * dEHF$$

Precinct resilience

Zero Waste SA Research Centre for Sustainable Design iSA and Behaviour

EHF	SOURCE		
Temperature data	Stations of EPA, BOM, Flinders University		
UHW IMPACT INDICATORS	SOURCE		
Emergency call-outs (morbidity)	SA and NSW Health		
Hospital emergency admission (morbidity)	SA and NSW Health		
Energy consumption	AusGrid and SA Power network transformers and electricity trials		
Water consumption	Smart meter trials in NSW and SA		
Heatwave perception	Researcher's survey, representative sample population from Adelaide and Sydney		
SURVEY RESULTS			
Heatwave perception ranking	Online survey, sample population from Adelaide and Sydney metropolitan regions		
Heatwave related health experience	 Place of residency and work, suburbs and postal 		
Applied adaptation and mitigation techniques	 Pilot survey will be conducted with a cluster 		
Willingness to retrofit	sampling of more affluent people with higher qualification.		

Data sources

Excess heat factor (EHF): To measure the intensity of UHWs

M=C+L+U (Unger et al, 2001) M is the metropolitan microclimate C is the climatic conditions L is the difference induced by geography U is the urban condition

Location specific EHF

Urban design: UHI countermeasures at precinct scale Level of exposure depends on
the built environment:Population vulnerability
Social characteristics the
influence inhabitants cap
to cope with heatwaves

Population vulnerability:Precinct resilience:Social characteristics thatThe level of precinct ignores theinfluence inhabitants capabilityUHWsto cope with heatwaves

Precinct resilience

UHI COUNTERMEASURES=MITIGATION		
Green space ratio	Google Earth/ Cities' maps where available	
Green intensity ratio (trees or grass)		
Water surface ratio		
Permeable surface rate		
Population density	Census 2011, ABS	
Materials' thermal storage capacity (type of building structur	^{e)} Google Earth/Researcher measurement	
PRECINCT EXPOSURE=ADAPTATION		
Energy performance of the buildings envelope	Researcher's measurement	
Outdoor shadow coverage	Google Earth/ Cities' maps where available	
Cool pool availability (library, swimming pool, shopping		
centre)	Google Earth	
Proportion of air-conditioned buildings	Researcher's measurement	
POPULATION EXPOSURE=ADAPTATION		
Income	Census 2011, ABS	
Crime rate	SA, NSW Crime Statistics	
POPULATION VULNERABILITY		
Age		
The level of isolation (single household)		
Pre-existing health conditions (disables)		
Education	Census 2011, ABS	
Hours spent at home: unemployment rate and people who		
work at home		
Ethnicity-born here or offshore		

Mitigation

Zero Waste SA Research Centre for Sustainable Design iSA and Behaviour

Adaptation

Mitigation techniques mitigate UHWs.

- 'Independent' mitigation, e.g.: more green space
- 'Human dependent' mitigation, e.g.: more shading
 on façade

Adaptation techniques help to build human resilient.

- Psychological adaptation, e.g.: acclimatisation
- Physiological adaptation; e.g.: clothes
- Physical adaptation e.g.: open the window (Brager and de Dear 1998)

Retrofitting techniques against UHWs

MEASURES

Scope of responsibility

Scope of benefit

Effect on the time distribution

Effect on precincts' resilience

Cost Maintenance

Lifetime

Willingness to adapt

'Adaptive increment' (where applicable)

Savings in energy and carbon emission

Level of independency from fossil fuels

EXPLANATION

Who can implement it?

Who can benefit from it?

- night-time or daytime
- weekend or weekday or both

Relative achievement, depends on original precinct resilience.

The initial construction and planning costs. All maintenance cost (25 years).

A tree's lifetime is expected to be much longer than external shading.

Investigate the common acceptance of the mitigation techniques via survey.

The additional temperature which can be bearable by the users after mitigation.

The findings of the calculation via EnergyPlus will be included.

Reduce the precincts' dependency on fossil fuels.

Cool retrofitting toolkit

Thank you!