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Abstract 

Smart meter data can be used for various purposes within smart grids, including residential 

energy applications, such as Home Energy Management Systems (HEMS) and Battery 

Energy Management Systems (BEMS). Considering the low feed-in tariffs for rooftop 

photovoltaic (PV) and increasing customer electricity prices, maximizing PV self-

consumption becomes a key objective for these energy management systems. This paper 

analyses the impacts of household electricity load consumption profile and PV size on PV 

self-consumption. A clustering model has been developed to classify households according to 

their daily load and generation profiles and PV size. The study is then extended to analyse the 

influence of different seasons on the self-consumption forecast. The results show that the 

clustering model can guide HEMS and BEMS in deciding more accurate strategies for 

forecasting day-ahead PV self-consumption.  

1. Introduction 

Year 2016 set a new record for PV installations with 70 GW new PV added globally (Climate 

Council 2017). Australia, being one of the world leaders for roof top PV systems, now has 

over 20% of houses owning PV systems, reaching up to 1.6 million rooftop systems (APVI & 

IEA-PVPS 2017). Previously, solar bonus schemes with high feed in tariffs have supported 

the uptake of PV and were common in many countries such as Germany, Australia and Italy. 

However most of these schemes have been abolished or reduced to lower rates and in 

particular for Australia, feed-in tariffs for PV systems are lower than electricity retail usage 

rates. As a result, household owners became financially more incentivized to directly 

consume the generated PV electricity (also known as PV self-consumption) rather than 

exporting it back to the grid. Besides the financial profits to the owners, increased PV self-

consumption can also reduce stress on the electricity distribution grid, help with frequency 

and voltage regulation, while reducing the requirement for relatively expensive gas-fired 

electricity generators that only work during peak periods (Luthander et al. 2015). Therefore, 

there is significant interest in studying PV self-consumption, and in developing energy 

management tools that maximize self-consumption (Matallanas et al. 2012).   

One common strategy to maximize PV self-consumption is to use energy storage, such that 

the excess PV generation can be stored in batteries or hot water tanks to be used at a later time 

by the household. Another common strategy is to use load shifting, which is a popular 

demand side management strategy (DSM). With load shifting, certain appliances can be 



 

shifted from early morning, afternoon, or night periods that have low or zero irradiation, to 

the periods where there is enough on-site generation. Both strategies can also be used 

simultaneously (Masa-Bote et al. 2014).  

However, PV self-consumption is influenced by the household’s daily consumption patterns 

and the size of the PV system. Hence, it is not an easy task to forecast PV self-consumption 

for the next day as both load and PV exhibits highly dynamic profiles at the individual 

household level. This study suggests a useful clustering method to have a better understanding 

of PV self-consumption profiles, according to consumption and PV generation patterns. This 

method can provide useful information to HEMS and BEMS for deciding an effective energy 

management and forecast strategy. Furthermore, climate and seasons have impact on self-

consumption. For example, self-consumption characteristics can be different for houses with 

electric heating and cooling between two regions; one where heating requirement is the 

dominant load when the irradiation is at lower levels and the other where the cooling 

requirement is dominant when the irradiation is at higher levels. Here, in order to provide 

important insights on the impact of climate and seasons, household self-consumption profiles 

are investigated for both winter and summer seasons.  

The paper is organized as follows: in section 2, the data set is described and a statistics 

summary is provided for the households’ consumption and PV generation. In section 3, the 

methodology and application of the chosen clustering method, K-means is described. 

Obtained results are provided with further discussion in section 4. The paper is concluded in 

section 5.  

2. Data-set 

The data-set used consists of 300 households with PV systems randomly selected from the 

Ausgrid network, an electricity distribution network provider in the Greater Sydney area of 

New South Wales (NSW), Australia (Ausgrid 2014). Each household’s electricity load and 

PV generation are measured by a gross meter between the period from 1 July 2010 to 30 June 

2013. The measurements are in half hour resolution and none of the households have 

batteries. The average daily load profile of each customer can be seen in Figure 1.  

 

Figure 1 Average half hourly load profile of 300 customers over 3 years 

 



 

Some other useful summery statistics of the household stock is presented below: 

Table 1 Summary statistics of Ausgrid data set 

Year 2010-2011 2011-2012 2012-2013 

Average daily consumption in 

kWh (per household) 

19.12 18.07 17.50 

Average daily generation in 

kWh (per household) 

5.81 5.71 5.98 

Average daily generation in 

kWh/kWp (per household) 

3.43 3.37 3.55 

 

The average system size of the household stock is 1.68 kW. This number is consistent with 

the average household PV size in Australia back in 2010; however, it does not represent 

today’s systems, since the average size of household rooftop PV installed in the last 5 years  is 

around 4.1 kW (APVI 2017). Another limitation of the study is the half-hourly raw data 

resolution. It was shown by (Wright & Firth 2007) that averaging higher resolution data such 

as 1 or 5 minutes to hourly or sub-hourly may give misleading results when calculating PV 

self-consumption, import and exports. More specific data resolution recommendations were 

provided by (Beck et al. 2016); for example, 15 minute data could be sufficient resolution for 

calculating PV self-consumption profiles for households with moderate consumption.  

3. Methodology 

There has been different ways of defining PV self-consumption in the literature; however, in 

this paper PV self-consumption will be defined as the amount of PV generation directly 

consumed by a household, also referred as absolute PV self-consumption (Widén 2014). 

Hence, PV self-consumption (PVSC) is equal to the minimum between the PV generation and 

the electricity load at any point, as shown in equation 1 below. Note that, this statement is 

valid for net-metering arrangements and may differ for other metering arrangements. 

𝑃𝑃𝑃𝑃(𝑃) = min[𝑃𝑃𝑃𝑃(𝑃), 𝑃𝑃(𝑃)] (1) 

The following figure includes data from two households with different PV sizes on the 1st of 

Jan 2010, which illustrates two different PV self-consumption cases. In Figure 2.a, between 7 

am to 15.30 pm, the PV generation is greater than the load, therefore the household 

consumption is completely off-set by the PV generation during this period. In this case, the 

value of the PV self-consumption is equal to the load. On the other hand, in Figure 2.b, the 

household load is always greater than the PV generation during the day. As a result, all PV 

generation is used to off-set a portion of the load and the value of the PV self-consumption is 

equal to the PV generation 

 



 

1 Curse of dimensionality refers to difficulties associated with analysing high dimensional data. For example, it 

is easier to plot and analyse data with two or three dimensions compared to data with higher dimensions. 

.  

Figure 2 Different PV self-consumption cases from two households on 1st Jan 2010:  a) 

PVSC=Load between 7am-15.30pm, b) PVSC=PV at all times during sunshine hours 

 

With the intention to identify households whose regular PV self-consumption profile is 

similar to one of the examples shown in figure 2, a well-known clustering model, K-means 

has been utilized. For the purpose of representing PV self-consumption characteristics of 

households, the following variables were for clustering:  

i. Average daily consumption 

ii. Average daily generation 

iii. The ratio of average daily consumption to average PV generation  

iv. The ratio of average daily consumption to PV size 

v. The ratio of average daily generation to PV size 

vi. PV size 

 

After experimentation and with the purpose of preventing problems pertinent to the curse of 

dimensionality (James et al. 2006)1, only two variables, iii and vi are found suitable to 

represent each household for this clustering problem. Working with a smaller number of 

variables also made the results easier to interpret. It was also observed that clustering results 

obtained by using other variables as household representatives such as iv-v, iv-vi or i-ii-vi 

gave similar results, with minor differences in cluster assignments of households. 



 

 

K-means tries to minimise the intra-cluster variation within each cluster, such that points that 

are most similar to each other are grouped in the same cluster. For measuring the distances 

between two points in clusters, the well-known Euclidean distance was chosen. To improve 

the quality of the clustering outcome, chosen variables iii and vi were normalized with respect 

to their maximum values, such that both lied within [0-1] range. For more details on K-means 

clustering procedure, normalization, mathematical representation of the algorithm and 

Euclidean distance please refer to (James et al. 2006). 

K-means model requires the number of clusters to be specified. In order to decide the number 

of clusters, the Silhouette method is used (Rousseeuw 1987), which measures the similarity of 

inter-cluster points and dissimilarity between different clusters. A positive and higher number 

of Silhouette value is more desirable as it represents a more effective clustering outcome. The 

following figure shows Silhouette values obtained with number of clusters between 2 to 20. 

 

Figure 3 Silhouette values for number of clusters between 2 to 20 

It can be seen that the highest Silhouette value was obtained with three clusters and hence the 

K-means was run to group households into three clusters.  

4. Results and discussion 

The obtained clustering assignment is shown in the following Figure 4. Each household 

corresponds to a single point represented by normalized PV size and normalized ratio of 

average daily load and average PV generation.   



 

 

 

Figure 4 Clustering results obtained by K-means when number of clusters is equal to three 

 

Cluster 1 represents households with larger PV and smaller ratio of average daily load/PV, 

whereas cluster 3 represents households with smaller PV size and larger ratio of average daily 

load/PV. The majority of households fall under cluster 2 with a moderate PV size and ratio of 

average daily load/PV. Figure 5 below shows examples of daily load and PV profiles for 16 

days from summer and winter seasons taken from three example households belonging to 

clusters 1, 2 and 3 respectively. The example household (ID: 74) from cluster 1, exhibits load 

profiles smaller than its PV generation profiles during sunshine hours except in early 

mornings and late afternoons, where solar irradiation is very low.  Other example household 

(ID: 228) from cluster 3, exhibits load profiles greater than its solar generation almost all 

times regardless of the season. The remaining seasons (autumn and spring) showed a similar 

behavior for these clusters. There were only a limited number of days where due to 

unexpected load consumption or whether conditions, these typical profiles were altered.  

On the other hand, this regular type of PV and load profile relationship was not clearly 

observed for the households in cluster 2, as shown by the example household (ID: 253) in the 

same figure below. There is no clear distinction between days where load or PV is more 

dominant during sunshine hours. However, some of the households from cluster 2 behaved 

similar to cluster 3 during summer, where PV was mostly greater than the load, but behaved 

similar to cluster 2 during winter where load was mostly greater than PV. 



 

 

 

 

Figure 5 Example household load and PV profiles for two weeks from summer and winter 

seasons 

 

 

 



 

 

As mentioned previously, in order to predict PV-self consumption for the next day, both PV 

and load forecasts are required. For each time point, the smaller value of these forecasts 

constitutes the PV self-consumption forecast. Previous research has shown the high variability 

and uncertainty around household level load and PV forecasts (Yildiz et al. 2017). Therefore, 

requiring only one of these forecasts instead of both can be advantageous in terms of forecast 

accuracy. In particular, for households which fall under cluster 1, load forecasts will be more 

relevant and may provide adequate information for most days, especially sunny ones.  On the 

other hand, in order to predict next day’s PV self-consumption for a household which falls 

under cluster 3, PV forecasts will be more relevant than load forecasts.  For a household 

whose regular PV and load relationship depends on the season such as some households from 

cluster 2, PV self-consumption forecast strategy can be altered between summer and winter 

months using cluster 1 and cluster 3 strategy respectively. Future research aims to investigate 

the forecast accuracy of PV-self consumption using these strategies for different clusters in 

order to validate the implications of the clustering.  

Besides PV-self consumption forecast, estimation of imports and exports can be highly 

valuable for HEMS, BEMS and utilities in planning for next day’s electricity operations. 

Especially for households which fall under cluster 1 and 2, next day’s predicted exports can 

be planned to be utilized by energy storage, or demand side management strategies, such as 

load shifting. Once again, both load and PV forecasts are required in order to predict the next 

day’s imports and exports where subtracting PV generation and load forecasts from each other 

gives the import and export forecasts. At this point, future research is also aimed to further 

investigate different forecast strategies for these clusters in predicting next day’s imports and 

exports. Specifically, for certain households, using historical import/export time series by 

itself within a Smart Meter Based Model (SMBM) framework (Yildiz et al. 2017) may 

increase predictive accuracy compared to  forecasting two independent time-series (load and 

PV) and subtracting them from one another. 

Another implication of this clustering model is when deciding on purchasing storage options. 

In particular, if a household is thinking of purchasing a battery, it can first be assigned to one 

of these clusters according to its PV size and historical average daily load/PV ratio. If the 

household falls under cluster 3, then it may be advised not to buy batteries since all its PV 

generation is used to off-set load for most of the days. However, if it falls under cluster 1, 

there may be more confidence in advocating for purchasing a battery as there is excess PV 

generation in most of the days. 

In order to test the validity of this method on a data set which is more representative of 

today’s average PV size, 4.1 kW, some preliminary analysis has been carried. Whilst 

assuming the consumption profiles remained constant, each household’s PV size was 

multiplied with a constant to give the average household stock PV size as 4.1kW. With the 

new simulated PV size and profiles, the K-means clustering was applied and it was observed 

that there was insignificant change in the household clustering assignments such that most 

households were assigned to the same clusters and the number of households in each cluster 

did not change. This is expected since the new clustering variables of the simulated data set iii 

and vi were multiples of previous data-set’s variables caused by the multiplication of PV size. 

However this time, clusters had different implications. In particular for the new cluster 1 

households, the excess PV amount significantly increased compared to previous cluster 1. For 

the new cluster 2, more households exhibited profiles similar to the previous cluster 1 



 

 

households with most days of excess PV. Finally, for the new cluster 3, it was observed that 

the amount of imports significantly reduced and some households showed profiles similar to 

previous cluster 2 households where there PV self-consumption characteristic varied across 

seasons.  It is important to note it is possible to find new clustering variables for the simulated 

data set, instead of using iii and vi. This may result in more effective clustering outcome such 

that the clusters preserve their characteristic load and PV profiles but the number of 

households assigned to each cluster changes. For example, due to the increase in PV size, 

more households could be assigned to cluster 1 and less households to cluster 3 while both 

clusters preserving their characteristic profiles. 

5. Conclusions  

This study proposes a clustering method to group households according to their PV size and 

average daily load/PV ratio. Results show that households which fall under different clusters 

exhibit distinctive load and PV profile relationship. When a new household is assigned to one 

of these clusters, important preliminary information can be provided to HEMS and BEMS, 

which can then use the information to devise appropriate forecast strategies for PV self-

consumption, import and exports. Future research is aimed to find more affective clustering 

variables which can be more effective for recent data-sets with higher average PV size. 

Furthermore, future research is going to further investigate different strategies for forecasting 

PV self-consumption, import and exports. 
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